Properties

Label 81225.1177
Modulus $81225$
Conductor $81225$
Order $1140$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(81225, base_ring=CyclotomicField(1140))
 
M = H._module
 
chi = DirichletCharacter(H, M([760,57,90]))
 
pari: [g,chi] = znchar(Mod(1177,81225))
 

Basic properties

Modulus: \(81225\)
Conductor: \(81225\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1140\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 81225.ne

\(\chi_{81225}(322,\cdot)\) \(\chi_{81225}(778,\cdot)\) \(\chi_{81225}(1177,\cdot)\) \(\chi_{81225}(1348,\cdot)\) \(\chi_{81225}(1462,\cdot)\) \(\chi_{81225}(1633,\cdot)\) \(\chi_{81225}(2203,\cdot)\) \(\chi_{81225}(2317,\cdot)\) \(\chi_{81225}(2488,\cdot)\) \(\chi_{81225}(3058,\cdot)\) \(\chi_{81225}(3172,\cdot)\) \(\chi_{81225}(3742,\cdot)\) \(\chi_{81225}(3913,\cdot)\) \(\chi_{81225}(4027,\cdot)\) \(\chi_{81225}(4198,\cdot)\) \(\chi_{81225}(4597,\cdot)\) \(\chi_{81225}(5452,\cdot)\) \(\chi_{81225}(5623,\cdot)\) \(\chi_{81225}(5737,\cdot)\) \(\chi_{81225}(5908,\cdot)\) \(\chi_{81225}(6478,\cdot)\) \(\chi_{81225}(6592,\cdot)\) \(\chi_{81225}(6763,\cdot)\) \(\chi_{81225}(7162,\cdot)\) \(\chi_{81225}(7333,\cdot)\) \(\chi_{81225}(7447,\cdot)\) \(\chi_{81225}(8017,\cdot)\) \(\chi_{81225}(8188,\cdot)\) \(\chi_{81225}(8473,\cdot)\) \(\chi_{81225}(8872,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1140})$
Fixed field: Number field defined by a degree 1140 polynomial (not computed)

Values on generators

\((36101,77977,48376)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{1}{20}\right),e\left(\frac{3}{38}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(22\)
\( \chi_{ 81225 }(1177, a) \) \(1\)\(1\)\(e\left(\frac{907}{1140}\right)\)\(e\left(\frac{337}{570}\right)\)\(e\left(\frac{173}{228}\right)\)\(e\left(\frac{147}{380}\right)\)\(e\left(\frac{148}{285}\right)\)\(e\left(\frac{293}{1140}\right)\)\(e\left(\frac{158}{285}\right)\)\(e\left(\frac{52}{285}\right)\)\(e\left(\frac{187}{380}\right)\)\(e\left(\frac{359}{1140}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 81225 }(1177,a) \;\) at \(\;a = \) e.g. 2