Basic properties
Modulus: | \(81225\) | |
Conductor: | \(81225\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(1140\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 81225.ne
\(\chi_{81225}(322,\cdot)\) \(\chi_{81225}(778,\cdot)\) \(\chi_{81225}(1177,\cdot)\) \(\chi_{81225}(1348,\cdot)\) \(\chi_{81225}(1462,\cdot)\) \(\chi_{81225}(1633,\cdot)\) \(\chi_{81225}(2203,\cdot)\) \(\chi_{81225}(2317,\cdot)\) \(\chi_{81225}(2488,\cdot)\) \(\chi_{81225}(3058,\cdot)\) \(\chi_{81225}(3172,\cdot)\) \(\chi_{81225}(3742,\cdot)\) \(\chi_{81225}(3913,\cdot)\) \(\chi_{81225}(4027,\cdot)\) \(\chi_{81225}(4198,\cdot)\) \(\chi_{81225}(4597,\cdot)\) \(\chi_{81225}(5452,\cdot)\) \(\chi_{81225}(5623,\cdot)\) \(\chi_{81225}(5737,\cdot)\) \(\chi_{81225}(5908,\cdot)\) \(\chi_{81225}(6478,\cdot)\) \(\chi_{81225}(6592,\cdot)\) \(\chi_{81225}(6763,\cdot)\) \(\chi_{81225}(7162,\cdot)\) \(\chi_{81225}(7333,\cdot)\) \(\chi_{81225}(7447,\cdot)\) \(\chi_{81225}(8017,\cdot)\) \(\chi_{81225}(8188,\cdot)\) \(\chi_{81225}(8473,\cdot)\) \(\chi_{81225}(8872,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{1140})$ |
Fixed field: | Number field defined by a degree 1140 polynomial (not computed) |
Values on generators
\((36101,77977,48376)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{9}{20}\right),e\left(\frac{31}{38}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(22\) |
\( \chi_{ 81225 }(1462, a) \) | \(1\) | \(1\) | \(e\left(\frac{683}{1140}\right)\) | \(e\left(\frac{113}{570}\right)\) | \(e\left(\frac{217}{228}\right)\) | \(e\left(\frac{303}{380}\right)\) | \(e\left(\frac{212}{285}\right)\) | \(e\left(\frac{697}{1140}\right)\) | \(e\left(\frac{157}{285}\right)\) | \(e\left(\frac{113}{285}\right)\) | \(e\left(\frac{83}{380}\right)\) | \(e\left(\frac{391}{1140}\right)\) |