from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8325, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([0,54,35]))
pari: [g,chi] = znchar(Mod(1621,8325))
χ8325(136,⋅)
χ8325(361,⋅)
χ8325(946,⋅)
χ8325(1261,⋅)
χ8325(1621,⋅)
χ8325(1891,⋅)
χ8325(2611,⋅)
χ8325(3286,⋅)
χ8325(3466,⋅)
χ8325(3556,⋅)
χ8325(3691,⋅)
χ8325(4591,⋅)
χ8325(5131,⋅)
χ8325(5221,⋅)
χ8325(5356,⋅)
χ8325(5941,⋅)
χ8325(6256,⋅)
χ8325(6616,⋅)
χ8325(6796,⋅)
χ8325(6886,⋅)
χ8325(7021,⋅)
χ8325(7606,⋅)
χ8325(7921,⋅)
χ8325(8281,⋅)
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(3701,7327,5626) → (1,e(53),e(187))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 | 16 | 17 | 19 |
χ8325(1621,a) |
1 | 1 | e(9089) | e(4544) | e(94) | e(3029) | e(154) | e(9061) | e(3013) | e(4543) | e(9047) | e(9037) |