Properties

Label 8325.kk
Modulus 83258325
Conductor 925925
Order 9090
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8325, base_ring=CyclotomicField(90))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,72,25]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(136,8325))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 83258325
Conductor: 925925
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 9090
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 925.ca
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ45)\Q(\zeta_{45})
Fixed field: Number field defined by a degree 90 polynomial

Characters in Galois orbit

Character 1-1 11 22 44 77 88 1111 1313 1414 1616 1717 1919
χ8325(136,)\chi_{8325}(136,\cdot) 11 11 e(790)e\left(\frac{7}{90}\right) e(745)e\left(\frac{7}{45}\right) e(89)e\left(\frac{8}{9}\right) e(730)e\left(\frac{7}{30}\right) e(215)e\left(\frac{2}{15}\right) e(2390)e\left(\frac{23}{90}\right) e(2930)e\left(\frac{29}{30}\right) e(1445)e\left(\frac{14}{45}\right) e(3190)e\left(\frac{31}{90}\right) e(1190)e\left(\frac{11}{90}\right)
χ8325(361,)\chi_{8325}(361,\cdot) 11 11 e(6790)e\left(\frac{67}{90}\right) e(2245)e\left(\frac{22}{45}\right) e(29)e\left(\frac{2}{9}\right) e(730)e\left(\frac{7}{30}\right) e(215)e\left(\frac{2}{15}\right) e(5390)e\left(\frac{53}{90}\right) e(2930)e\left(\frac{29}{30}\right) e(4445)e\left(\frac{44}{45}\right) e(190)e\left(\frac{1}{90}\right) e(4190)e\left(\frac{41}{90}\right)
χ8325(946,)\chi_{8325}(946,\cdot) 11 11 e(1990)e\left(\frac{19}{90}\right) e(1945)e\left(\frac{19}{45}\right) e(59)e\left(\frac{5}{9}\right) e(1930)e\left(\frac{19}{30}\right) e(1415)e\left(\frac{14}{15}\right) e(1190)e\left(\frac{11}{90}\right) e(2330)e\left(\frac{23}{30}\right) e(3845)e\left(\frac{38}{45}\right) e(790)e\left(\frac{7}{90}\right) e(1790)e\left(\frac{17}{90}\right)
χ8325(1261,)\chi_{8325}(1261,\cdot) 11 11 e(4790)e\left(\frac{47}{90}\right) e(245)e\left(\frac{2}{45}\right) e(19)e\left(\frac{1}{9}\right) e(1730)e\left(\frac{17}{30}\right) e(715)e\left(\frac{7}{15}\right) e(1390)e\left(\frac{13}{90}\right) e(1930)e\left(\frac{19}{30}\right) e(445)e\left(\frac{4}{45}\right) e(4190)e\left(\frac{41}{90}\right) e(6190)e\left(\frac{61}{90}\right)
χ8325(1621,)\chi_{8325}(1621,\cdot) 11 11 e(8990)e\left(\frac{89}{90}\right) e(4445)e\left(\frac{44}{45}\right) e(49)e\left(\frac{4}{9}\right) e(2930)e\left(\frac{29}{30}\right) e(415)e\left(\frac{4}{15}\right) e(6190)e\left(\frac{61}{90}\right) e(1330)e\left(\frac{13}{30}\right) e(4345)e\left(\frac{43}{45}\right) e(4790)e\left(\frac{47}{90}\right) e(3790)e\left(\frac{37}{90}\right)
χ8325(1891,)\chi_{8325}(1891,\cdot) 11 11 e(2390)e\left(\frac{23}{90}\right) e(2345)e\left(\frac{23}{45}\right) e(79)e\left(\frac{7}{9}\right) e(2330)e\left(\frac{23}{30}\right) e(1315)e\left(\frac{13}{15}\right) e(3790)e\left(\frac{37}{90}\right) e(130)e\left(\frac{1}{30}\right) e(145)e\left(\frac{1}{45}\right) e(8990)e\left(\frac{89}{90}\right) e(4990)e\left(\frac{49}{90}\right)
χ8325(2611,)\chi_{8325}(2611,\cdot) 11 11 e(3790)e\left(\frac{37}{90}\right) e(3745)e\left(\frac{37}{45}\right) e(59)e\left(\frac{5}{9}\right) e(730)e\left(\frac{7}{30}\right) e(215)e\left(\frac{2}{15}\right) e(8390)e\left(\frac{83}{90}\right) e(2930)e\left(\frac{29}{30}\right) e(2945)e\left(\frac{29}{45}\right) e(6190)e\left(\frac{61}{90}\right) e(7190)e\left(\frac{71}{90}\right)
χ8325(3286,)\chi_{8325}(3286,\cdot) 11 11 e(1790)e\left(\frac{17}{90}\right) e(1745)e\left(\frac{17}{45}\right) e(49)e\left(\frac{4}{9}\right) e(1730)e\left(\frac{17}{30}\right) e(715)e\left(\frac{7}{15}\right) e(4390)e\left(\frac{43}{90}\right) e(1930)e\left(\frac{19}{30}\right) e(3445)e\left(\frac{34}{45}\right) e(1190)e\left(\frac{11}{90}\right) e(190)e\left(\frac{1}{90}\right)
χ8325(3466,)\chi_{8325}(3466,\cdot) 11 11 e(4390)e\left(\frac{43}{90}\right) e(4345)e\left(\frac{43}{45}\right) e(89)e\left(\frac{8}{9}\right) e(1330)e\left(\frac{13}{30}\right) e(815)e\left(\frac{8}{15}\right) e(7790)e\left(\frac{77}{90}\right) e(1130)e\left(\frac{11}{30}\right) e(4145)e\left(\frac{41}{45}\right) e(4990)e\left(\frac{49}{90}\right) e(2990)e\left(\frac{29}{90}\right)
χ8325(3556,)\chi_{8325}(3556,\cdot) 11 11 e(4190)e\left(\frac{41}{90}\right) e(4145)e\left(\frac{41}{45}\right) e(79)e\left(\frac{7}{9}\right) e(1130)e\left(\frac{11}{30}\right) e(115)e\left(\frac{1}{15}\right) e(1990)e\left(\frac{19}{90}\right) e(730)e\left(\frac{7}{30}\right) e(3745)e\left(\frac{37}{45}\right) e(5390)e\left(\frac{53}{90}\right) e(1390)e\left(\frac{13}{90}\right)
χ8325(3691,)\chi_{8325}(3691,\cdot) 11 11 e(1390)e\left(\frac{13}{90}\right) e(1345)e\left(\frac{13}{45}\right) e(29)e\left(\frac{2}{9}\right) e(1330)e\left(\frac{13}{30}\right) e(815)e\left(\frac{8}{15}\right) e(1790)e\left(\frac{17}{90}\right) e(1130)e\left(\frac{11}{30}\right) e(2645)e\left(\frac{26}{45}\right) e(1990)e\left(\frac{19}{90}\right) e(5990)e\left(\frac{59}{90}\right)
χ8325(4591,)\chi_{8325}(4591,\cdot) 11 11 e(8390)e\left(\frac{83}{90}\right) e(3845)e\left(\frac{38}{45}\right) e(19)e\left(\frac{1}{9}\right) e(2330)e\left(\frac{23}{30}\right) e(1315)e\left(\frac{13}{15}\right) e(6790)e\left(\frac{67}{90}\right) e(130)e\left(\frac{1}{30}\right) e(3145)e\left(\frac{31}{45}\right) e(5990)e\left(\frac{59}{90}\right) e(7990)e\left(\frac{79}{90}\right)
χ8325(5131,)\chi_{8325}(5131,\cdot) 11 11 e(6190)e\left(\frac{61}{90}\right) e(1645)e\left(\frac{16}{45}\right) e(89)e\left(\frac{8}{9}\right) e(130)e\left(\frac{1}{30}\right) e(1115)e\left(\frac{11}{15}\right) e(5990)e\left(\frac{59}{90}\right) e(1730)e\left(\frac{17}{30}\right) e(3245)e\left(\frac{32}{45}\right) e(1390)e\left(\frac{13}{90}\right) e(8390)e\left(\frac{83}{90}\right)
χ8325(5221,)\chi_{8325}(5221,\cdot) 11 11 e(5990)e\left(\frac{59}{90}\right) e(1445)e\left(\frac{14}{45}\right) e(79)e\left(\frac{7}{9}\right) e(2930)e\left(\frac{29}{30}\right) e(415)e\left(\frac{4}{15}\right) e(190)e\left(\frac{1}{90}\right) e(1330)e\left(\frac{13}{30}\right) e(2845)e\left(\frac{28}{45}\right) e(1790)e\left(\frac{17}{90}\right) e(6790)e\left(\frac{67}{90}\right)
χ8325(5356,)\chi_{8325}(5356,\cdot) 11 11 e(3190)e\left(\frac{31}{90}\right) e(3145)e\left(\frac{31}{45}\right) e(29)e\left(\frac{2}{9}\right) e(130)e\left(\frac{1}{30}\right) e(1115)e\left(\frac{11}{15}\right) e(8990)e\left(\frac{89}{90}\right) e(1730)e\left(\frac{17}{30}\right) e(1745)e\left(\frac{17}{45}\right) e(7390)e\left(\frac{73}{90}\right) e(2390)e\left(\frac{23}{90}\right)
χ8325(5941,)\chi_{8325}(5941,\cdot) 11 11 e(7390)e\left(\frac{73}{90}\right) e(2845)e\left(\frac{28}{45}\right) e(59)e\left(\frac{5}{9}\right) e(1330)e\left(\frac{13}{30}\right) e(815)e\left(\frac{8}{15}\right) e(4790)e\left(\frac{47}{90}\right) e(1130)e\left(\frac{11}{30}\right) e(1145)e\left(\frac{11}{45}\right) e(7990)e\left(\frac{79}{90}\right) e(8990)e\left(\frac{89}{90}\right)
χ8325(6256,)\chi_{8325}(6256,\cdot) 11 11 e(1190)e\left(\frac{11}{90}\right) e(1145)e\left(\frac{11}{45}\right) e(19)e\left(\frac{1}{9}\right) e(1130)e\left(\frac{11}{30}\right) e(115)e\left(\frac{1}{15}\right) e(4990)e\left(\frac{49}{90}\right) e(730)e\left(\frac{7}{30}\right) e(2245)e\left(\frac{22}{45}\right) e(2390)e\left(\frac{23}{90}\right) e(4390)e\left(\frac{43}{90}\right)
χ8325(6616,)\chi_{8325}(6616,\cdot) 11 11 e(5390)e\left(\frac{53}{90}\right) e(845)e\left(\frac{8}{45}\right) e(49)e\left(\frac{4}{9}\right) e(2330)e\left(\frac{23}{30}\right) e(1315)e\left(\frac{13}{15}\right) e(790)e\left(\frac{7}{90}\right) e(130)e\left(\frac{1}{30}\right) e(1645)e\left(\frac{16}{45}\right) e(2990)e\left(\frac{29}{90}\right) e(1990)e\left(\frac{19}{90}\right)
χ8325(6796,)\chi_{8325}(6796,\cdot) 11 11 e(7990)e\left(\frac{79}{90}\right) e(3445)e\left(\frac{34}{45}\right) e(89)e\left(\frac{8}{9}\right) e(1930)e\left(\frac{19}{30}\right) e(1415)e\left(\frac{14}{15}\right) e(4190)e\left(\frac{41}{90}\right) e(2330)e\left(\frac{23}{30}\right) e(2345)e\left(\frac{23}{45}\right) e(6790)e\left(\frac{67}{90}\right) e(4790)e\left(\frac{47}{90}\right)
χ8325(6886,)\chi_{8325}(6886,\cdot) 11 11 e(7790)e\left(\frac{77}{90}\right) e(3245)e\left(\frac{32}{45}\right) e(79)e\left(\frac{7}{9}\right) e(1730)e\left(\frac{17}{30}\right) e(715)e\left(\frac{7}{15}\right) e(7390)e\left(\frac{73}{90}\right) e(1930)e\left(\frac{19}{30}\right) e(1945)e\left(\frac{19}{45}\right) e(7190)e\left(\frac{71}{90}\right) e(3190)e\left(\frac{31}{90}\right)
χ8325(7021,)\chi_{8325}(7021,\cdot) 11 11 e(4990)e\left(\frac{49}{90}\right) e(445)e\left(\frac{4}{45}\right) e(29)e\left(\frac{2}{9}\right) e(1930)e\left(\frac{19}{30}\right) e(1415)e\left(\frac{14}{15}\right) e(7190)e\left(\frac{71}{90}\right) e(2330)e\left(\frac{23}{30}\right) e(845)e\left(\frac{8}{45}\right) e(3790)e\left(\frac{37}{90}\right) e(7790)e\left(\frac{77}{90}\right)
χ8325(7606,)\chi_{8325}(7606,\cdot) 11 11 e(190)e\left(\frac{1}{90}\right) e(145)e\left(\frac{1}{45}\right) e(59)e\left(\frac{5}{9}\right) e(130)e\left(\frac{1}{30}\right) e(1115)e\left(\frac{11}{15}\right) e(2990)e\left(\frac{29}{90}\right) e(1730)e\left(\frac{17}{30}\right) e(245)e\left(\frac{2}{45}\right) e(4390)e\left(\frac{43}{90}\right) e(5390)e\left(\frac{53}{90}\right)
χ8325(7921,)\chi_{8325}(7921,\cdot) 11 11 e(2990)e\left(\frac{29}{90}\right) e(2945)e\left(\frac{29}{45}\right) e(19)e\left(\frac{1}{9}\right) e(2930)e\left(\frac{29}{30}\right) e(415)e\left(\frac{4}{15}\right) e(3190)e\left(\frac{31}{90}\right) e(1330)e\left(\frac{13}{30}\right) e(1345)e\left(\frac{13}{45}\right) e(7790)e\left(\frac{77}{90}\right) e(790)e\left(\frac{7}{90}\right)
χ8325(8281,)\chi_{8325}(8281,\cdot) 11 11 e(7190)e\left(\frac{71}{90}\right) e(2645)e\left(\frac{26}{45}\right) e(49)e\left(\frac{4}{9}\right) e(1130)e\left(\frac{11}{30}\right) e(115)e\left(\frac{1}{15}\right) e(7990)e\left(\frac{79}{90}\right) e(730)e\left(\frac{7}{30}\right) e(745)e\left(\frac{7}{45}\right) e(8390)e\left(\frac{83}{90}\right) e(7390)e\left(\frac{73}{90}\right)