Properties

Label 8325.1639
Modulus 83258325
Conductor 925925
Order 3030
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8325, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,9,25]))
 
pari: [g,chi] = znchar(Mod(1639,8325))
 

Basic properties

Modulus: 83258325
Conductor: 925925
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3030
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ925(714,)\chi_{925}(714,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8325.gl

χ8325(64,)\chi_{8325}(64,\cdot) χ8325(1639,)\chi_{8325}(1639,\cdot) χ8325(1729,)\chi_{8325}(1729,\cdot) χ8325(3304,)\chi_{8325}(3304,\cdot) χ8325(3394,)\chi_{8325}(3394,\cdot) χ8325(4969,)\chi_{8325}(4969,\cdot) χ8325(5059,)\chi_{8325}(5059,\cdot) χ8325(6634,)\chi_{8325}(6634,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ15)\Q(\zeta_{15})
Fixed field: 30.30.712054643298888889330514089285546802246873454578235396184027194976806640625.1

Values on generators

(3701,7327,5626)(3701,7327,5626)(1,e(310),e(56))(1,e\left(\frac{3}{10}\right),e\left(\frac{5}{6}\right))

First values

aa 1-11122447788111113131414161617171919
χ8325(1639,a) \chi_{ 8325 }(1639, a) 1111e(215)e\left(\frac{2}{15}\right)e(415)e\left(\frac{4}{15}\right)e(16)e\left(\frac{1}{6}\right)e(25)e\left(\frac{2}{5}\right)e(45)e\left(\frac{4}{5}\right)e(1315)e\left(\frac{13}{15}\right)e(310)e\left(\frac{3}{10}\right)e(815)e\left(\frac{8}{15}\right)e(1115)e\left(\frac{11}{15}\right)e(1730)e\left(\frac{17}{30}\right)
sage: chi.jacobi_sum(n)
 
χ8325(1639,a)   \chi_{ 8325 }(1639,a) \; at   a=\;a = e.g. 2