Properties

Label 8325.1639
Modulus $8325$
Conductor $925$
Order $30$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8325, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,9,25]))
 
pari: [g,chi] = znchar(Mod(1639,8325))
 

Basic properties

Modulus: \(8325\)
Conductor: \(925\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(30\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{925}(714,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8325.gl

\(\chi_{8325}(64,\cdot)\) \(\chi_{8325}(1639,\cdot)\) \(\chi_{8325}(1729,\cdot)\) \(\chi_{8325}(3304,\cdot)\) \(\chi_{8325}(3394,\cdot)\) \(\chi_{8325}(4969,\cdot)\) \(\chi_{8325}(5059,\cdot)\) \(\chi_{8325}(6634,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 30.30.712054643298888889330514089285546802246873454578235396184027194976806640625.1

Values on generators

\((3701,7327,5626)\) → \((1,e\left(\frac{3}{10}\right),e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 8325 }(1639, a) \) \(1\)\(1\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{17}{30}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8325 }(1639,a) \;\) at \(\;a = \) e.g. 2