from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8325, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([0,21,25]))
pari: [g,chi] = znchar(Mod(6634,8325))
Basic properties
Modulus: | ||
Conductor: | sage: chi.conductor()
pari: znconreyconductor(g,chi)
| |
Order: | sage: chi.multiplicative_order()
pari: charorder(g,chi)
| |
Real: | no | |
Primitive: | no, induced from | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 8325.gl
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | |
Fixed field: | 30.30.712054643298888889330514089285546802246873454578235396184027194976806640625.1 |
Values on generators
→
First values
sage: chi.jacobi_sum(n)