Properties

Label 8325.3368
Modulus $8325$
Conductor $45$
Order $12$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8325, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([2,9,0]))
 
pari: [g,chi] = znchar(Mod(3368,8325))
 

Basic properties

Modulus: \(8325\)
Conductor: \(45\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{45}(38,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8325.dn

\(\chi_{8325}(482,\cdot)\) \(\chi_{8325}(3368,\cdot)\) \(\chi_{8325}(6032,\cdot)\) \(\chi_{8325}(6143,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: \(\Q(\zeta_{45})^+\)

Values on generators

\((3701,7327,5626)\) → \((e\left(\frac{1}{6}\right),-i,1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 8325 }(3368, a) \) \(1\)\(1\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{5}{12}\right)\)\(-i\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(i\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8325 }(3368,a) \;\) at \(\;a = \) e.g. 2