Properties

Label 8325.3368
Modulus 83258325
Conductor 4545
Order 1212
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8325, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([2,9,0]))
 
pari: [g,chi] = znchar(Mod(3368,8325))
 

Basic properties

Modulus: 83258325
Conductor: 4545
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ45(38,)\chi_{45}(38,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8325.dn

χ8325(482,)\chi_{8325}(482,\cdot) χ8325(3368,)\chi_{8325}(3368,\cdot) χ8325(6032,)\chi_{8325}(6032,\cdot) χ8325(6143,)\chi_{8325}(6143,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: Q(ζ45)+\Q(\zeta_{45})^+

Values on generators

(3701,7327,5626)(3701,7327,5626)(e(16),i,1)(e\left(\frac{1}{6}\right),-i,1)

First values

aa 1-11122447788111113131414161617171919
χ8325(3368,a) \chi_{ 8325 }(3368, a) 1111e(1112)e\left(\frac{11}{12}\right)e(56)e\left(\frac{5}{6}\right)e(512)e\left(\frac{5}{12}\right)i-ie(16)e\left(\frac{1}{6}\right)e(712)e\left(\frac{7}{12}\right)e(13)e\left(\frac{1}{3}\right)e(23)e\left(\frac{2}{3}\right)ii1-1
sage: chi.jacobi_sum(n)
 
χ8325(3368,a)   \chi_{ 8325 }(3368,a) \; at   a=\;a = e.g. 2