Properties

Label 8325.dn
Modulus 83258325
Conductor 4545
Order 1212
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8325, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,3,0]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(482,8325))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 83258325
Conductor: 4545
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 45.l
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: Q(ζ45)+\Q(\zeta_{45})^+

Characters in Galois orbit

Character 1-1 11 22 44 77 88 1111 1313 1414 1616 1717 1919
χ8325(482,)\chi_{8325}(482,\cdot) 11 11 e(112)e\left(\frac{1}{12}\right) e(16)e\left(\frac{1}{6}\right) e(712)e\left(\frac{7}{12}\right) ii e(56)e\left(\frac{5}{6}\right) e(512)e\left(\frac{5}{12}\right) e(23)e\left(\frac{2}{3}\right) e(13)e\left(\frac{1}{3}\right) i-i 1-1
χ8325(3368,)\chi_{8325}(3368,\cdot) 11 11 e(1112)e\left(\frac{11}{12}\right) e(56)e\left(\frac{5}{6}\right) e(512)e\left(\frac{5}{12}\right) i-i e(16)e\left(\frac{1}{6}\right) e(712)e\left(\frac{7}{12}\right) e(13)e\left(\frac{1}{3}\right) e(23)e\left(\frac{2}{3}\right) ii 1-1
χ8325(6032,)\chi_{8325}(6032,\cdot) 11 11 e(512)e\left(\frac{5}{12}\right) e(56)e\left(\frac{5}{6}\right) e(1112)e\left(\frac{11}{12}\right) ii e(16)e\left(\frac{1}{6}\right) e(112)e\left(\frac{1}{12}\right) e(13)e\left(\frac{1}{3}\right) e(23)e\left(\frac{2}{3}\right) i-i 1-1
χ8325(6143,)\chi_{8325}(6143,\cdot) 11 11 e(712)e\left(\frac{7}{12}\right) e(16)e\left(\frac{1}{6}\right) e(112)e\left(\frac{1}{12}\right) i-i e(56)e\left(\frac{5}{6}\right) e(1112)e\left(\frac{11}{12}\right) e(23)e\left(\frac{2}{3}\right) e(13)e\left(\frac{1}{3}\right) ii 1-1