Properties

Label 8325.3914
Modulus $8325$
Conductor $2775$
Order $60$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8325, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([30,18,35]))
 
pari: [g,chi] = znchar(Mod(3914,8325))
 

Basic properties

Modulus: \(8325\)
Conductor: \(2775\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2775}(1139,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8325.jh

\(\chi_{8325}(134,\cdot)\) \(\chi_{8325}(584,\cdot)\) \(\chi_{8325}(2339,\cdot)\) \(\chi_{8325}(2789,\cdot)\) \(\chi_{8325}(3464,\cdot)\) \(\chi_{8325}(3914,\cdot)\) \(\chi_{8325}(4004,\cdot)\) \(\chi_{8325}(4454,\cdot)\) \(\chi_{8325}(5129,\cdot)\) \(\chi_{8325}(5579,\cdot)\) \(\chi_{8325}(5669,\cdot)\) \(\chi_{8325}(6119,\cdot)\) \(\chi_{8325}(6794,\cdot)\) \(\chi_{8325}(7244,\cdot)\) \(\chi_{8325}(7334,\cdot)\) \(\chi_{8325}(7784,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Values on generators

\((3701,7327,5626)\) → \((-1,e\left(\frac{3}{10}\right),e\left(\frac{7}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 8325 }(3914, a) \) \(1\)\(1\)\(e\left(\frac{23}{60}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{7}{60}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{29}{60}\right)\)\(e\left(\frac{49}{60}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8325 }(3914,a) \;\) at \(\;a = \) e.g. 2