Properties

Label 8325.jh
Modulus $8325$
Conductor $2775$
Order $60$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8325, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([30,42,25]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(134,8325))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8325\)
Conductor: \(2775\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 2775.dt
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(13\) \(14\) \(16\) \(17\) \(19\)
\(\chi_{8325}(134,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{11}{60}\right)\)
\(\chi_{8325}(584,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{1}{60}\right)\)
\(\chi_{8325}(2339,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{19}{60}\right)\)
\(\chi_{8325}(2789,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{29}{60}\right)\)
\(\chi_{8325}(3464,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{59}{60}\right)\)
\(\chi_{8325}(3914,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{49}{60}\right)\)
\(\chi_{8325}(4004,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{43}{60}\right)\)
\(\chi_{8325}(4454,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{53}{60}\right)\)
\(\chi_{8325}(5129,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{23}{60}\right)\)
\(\chi_{8325}(5579,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{13}{60}\right)\)
\(\chi_{8325}(5669,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{7}{60}\right)\)
\(\chi_{8325}(6119,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{17}{60}\right)\)
\(\chi_{8325}(6794,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{47}{60}\right)\)
\(\chi_{8325}(7244,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{37}{60}\right)\)
\(\chi_{8325}(7334,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{31}{60}\right)\)
\(\chi_{8325}(7784,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{41}{60}\right)\)