from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8325, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([30,63,25]))
pari: [g,chi] = znchar(Mod(4909,8325))
χ8325(139,⋅)
χ8325(484,⋅)
χ8325(844,⋅)
χ8325(1114,⋅)
χ8325(1579,⋅)
χ8325(1804,⋅)
χ8325(2389,⋅)
χ8325(2509,⋅)
χ8325(2779,⋅)
χ8325(3244,⋅)
χ8325(3469,⋅)
χ8325(3814,⋅)
χ8325(4054,⋅)
χ8325(4444,⋅)
χ8325(4909,⋅)
χ8325(5134,⋅)
χ8325(5479,⋅)
χ8325(5719,⋅)
χ8325(5839,⋅)
χ8325(6109,⋅)
χ8325(7144,⋅)
χ8325(7384,⋅)
χ8325(7504,⋅)
χ8325(8239,⋅)
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(3701,7327,5626) → (e(31),e(107),e(185))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 | 16 | 17 | 19 |
χ8325(4909,a) |
1 | 1 | e(4514) | e(4528) | e(1813) | e(1514) | e(1513) | e(451) | e(301) | e(4511) | e(452) | e(9029) |