Properties

Label 8325.ku
Modulus 83258325
Conductor 83258325
Order 9090
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8325, base_ring=CyclotomicField(90))
 
M = H._module
 
chi = DirichletCharacter(H, M([30,27,85]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(139,8325))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 83258325
Conductor: 83258325
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 9090
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ45)\Q(\zeta_{45})
Fixed field: Number field defined by a degree 90 polynomial

Characters in Galois orbit

Character 1-1 11 22 44 77 88 1111 1313 1414 1616 1717 1919
χ8325(139,)\chi_{8325}(139,\cdot) 11 11 e(2645)e\left(\frac{26}{45}\right) e(745)e\left(\frac{7}{45}\right) e(118)e\left(\frac{1}{18}\right) e(1115)e\left(\frac{11}{15}\right) e(715)e\left(\frac{7}{15}\right) e(3445)e\left(\frac{34}{45}\right) e(1930)e\left(\frac{19}{30}\right) e(1445)e\left(\frac{14}{45}\right) e(2345)e\left(\frac{23}{45}\right) e(4190)e\left(\frac{41}{90}\right)
χ8325(484,)\chi_{8325}(484,\cdot) 11 11 e(445)e\left(\frac{4}{45}\right) e(845)e\left(\frac{8}{45}\right) e(518)e\left(\frac{5}{18}\right) e(415)e\left(\frac{4}{15}\right) e(815)e\left(\frac{8}{15}\right) e(2645)e\left(\frac{26}{45}\right) e(1130)e\left(\frac{11}{30}\right) e(1645)e\left(\frac{16}{45}\right) e(745)e\left(\frac{7}{45}\right) e(7990)e\left(\frac{79}{90}\right)
χ8325(844,)\chi_{8325}(844,\cdot) 11 11 e(4345)e\left(\frac{43}{45}\right) e(4145)e\left(\frac{41}{45}\right) e(1118)e\left(\frac{11}{18}\right) e(1315)e\left(\frac{13}{15}\right) e(1115)e\left(\frac{11}{15}\right) e(3245)e\left(\frac{32}{45}\right) e(1730)e\left(\frac{17}{30}\right) e(3745)e\left(\frac{37}{45}\right) e(1945)e\left(\frac{19}{45}\right) e(7390)e\left(\frac{73}{90}\right)
χ8325(1114,)\chi_{8325}(1114,\cdot) 11 11 e(145)e\left(\frac{1}{45}\right) e(245)e\left(\frac{2}{45}\right) e(1718)e\left(\frac{17}{18}\right) e(115)e\left(\frac{1}{15}\right) e(215)e\left(\frac{2}{15}\right) e(2945)e\left(\frac{29}{45}\right) e(2930)e\left(\frac{29}{30}\right) e(445)e\left(\frac{4}{45}\right) e(1345)e\left(\frac{13}{45}\right) e(3190)e\left(\frac{31}{90}\right)
χ8325(1579,)\chi_{8325}(1579,\cdot) 11 11 e(3245)e\left(\frac{32}{45}\right) e(1945)e\left(\frac{19}{45}\right) e(1318)e\left(\frac{13}{18}\right) e(215)e\left(\frac{2}{15}\right) e(415)e\left(\frac{4}{15}\right) e(2845)e\left(\frac{28}{45}\right) e(1330)e\left(\frac{13}{30}\right) e(3845)e\left(\frac{38}{45}\right) e(1145)e\left(\frac{11}{45}\right) e(4790)e\left(\frac{47}{90}\right)
χ8325(1804,)\chi_{8325}(1804,\cdot) 11 11 e(1745)e\left(\frac{17}{45}\right) e(3445)e\left(\frac{34}{45}\right) e(118)e\left(\frac{1}{18}\right) e(215)e\left(\frac{2}{15}\right) e(415)e\left(\frac{4}{15}\right) e(4345)e\left(\frac{43}{45}\right) e(1330)e\left(\frac{13}{30}\right) e(2345)e\left(\frac{23}{45}\right) e(4145)e\left(\frac{41}{45}\right) e(7790)e\left(\frac{77}{90}\right)
χ8325(2389,)\chi_{8325}(2389,\cdot) 11 11 e(1145)e\left(\frac{11}{45}\right) e(2245)e\left(\frac{22}{45}\right) e(718)e\left(\frac{7}{18}\right) e(1115)e\left(\frac{11}{15}\right) e(715)e\left(\frac{7}{15}\right) e(445)e\left(\frac{4}{45}\right) e(1930)e\left(\frac{19}{30}\right) e(4445)e\left(\frac{44}{45}\right) e(845)e\left(\frac{8}{45}\right) e(7190)e\left(\frac{71}{90}\right)
χ8325(2509,)\chi_{8325}(2509,\cdot) 11 11 e(3445)e\left(\frac{34}{45}\right) e(2345)e\left(\frac{23}{45}\right) e(1118)e\left(\frac{11}{18}\right) e(415)e\left(\frac{4}{15}\right) e(815)e\left(\frac{8}{15}\right) e(4145)e\left(\frac{41}{45}\right) e(1130)e\left(\frac{11}{30}\right) e(145)e\left(\frac{1}{45}\right) e(3745)e\left(\frac{37}{45}\right) e(1990)e\left(\frac{19}{90}\right)
χ8325(2779,)\chi_{8325}(2779,\cdot) 11 11 e(3745)e\left(\frac{37}{45}\right) e(2945)e\left(\frac{29}{45}\right) e(1718)e\left(\frac{17}{18}\right) e(715)e\left(\frac{7}{15}\right) e(1415)e\left(\frac{14}{15}\right) e(3845)e\left(\frac{38}{45}\right) e(2330)e\left(\frac{23}{30}\right) e(1345)e\left(\frac{13}{45}\right) e(3145)e\left(\frac{31}{45}\right) e(6790)e\left(\frac{67}{90}\right)
χ8325(3244,)\chi_{8325}(3244,\cdot) 11 11 e(2345)e\left(\frac{23}{45}\right) e(145)e\left(\frac{1}{45}\right) e(1318)e\left(\frac{13}{18}\right) e(815)e\left(\frac{8}{15}\right) e(115)e\left(\frac{1}{15}\right) e(3745)e\left(\frac{37}{45}\right) e(730)e\left(\frac{7}{30}\right) e(245)e\left(\frac{2}{45}\right) e(2945)e\left(\frac{29}{45}\right) e(8390)e\left(\frac{83}{90}\right)
χ8325(3469,)\chi_{8325}(3469,\cdot) 11 11 e(845)e\left(\frac{8}{45}\right) e(1645)e\left(\frac{16}{45}\right) e(118)e\left(\frac{1}{18}\right) e(815)e\left(\frac{8}{15}\right) e(115)e\left(\frac{1}{15}\right) e(745)e\left(\frac{7}{45}\right) e(730)e\left(\frac{7}{30}\right) e(3245)e\left(\frac{32}{45}\right) e(1445)e\left(\frac{14}{45}\right) e(2390)e\left(\frac{23}{90}\right)
χ8325(3814,)\chi_{8325}(3814,\cdot) 11 11 e(3145)e\left(\frac{31}{45}\right) e(1745)e\left(\frac{17}{45}\right) e(518)e\left(\frac{5}{18}\right) e(115)e\left(\frac{1}{15}\right) e(215)e\left(\frac{2}{15}\right) e(4445)e\left(\frac{44}{45}\right) e(2930)e\left(\frac{29}{30}\right) e(3445)e\left(\frac{34}{45}\right) e(4345)e\left(\frac{43}{45}\right) e(6190)e\left(\frac{61}{90}\right)
χ8325(4054,)\chi_{8325}(4054,\cdot) 11 11 e(245)e\left(\frac{2}{45}\right) e(445)e\left(\frac{4}{45}\right) e(718)e\left(\frac{7}{18}\right) e(215)e\left(\frac{2}{15}\right) e(415)e\left(\frac{4}{15}\right) e(1345)e\left(\frac{13}{45}\right) e(1330)e\left(\frac{13}{30}\right) e(845)e\left(\frac{8}{45}\right) e(2645)e\left(\frac{26}{45}\right) e(1790)e\left(\frac{17}{90}\right)
χ8325(4444,)\chi_{8325}(4444,\cdot) 11 11 e(2845)e\left(\frac{28}{45}\right) e(1145)e\left(\frac{11}{45}\right) e(1718)e\left(\frac{17}{18}\right) e(1315)e\left(\frac{13}{15}\right) e(1115)e\left(\frac{11}{15}\right) e(245)e\left(\frac{2}{45}\right) e(1730)e\left(\frac{17}{30}\right) e(2245)e\left(\frac{22}{45}\right) e(445)e\left(\frac{4}{45}\right) e(1390)e\left(\frac{13}{90}\right)
χ8325(4909,)\chi_{8325}(4909,\cdot) 11 11 e(1445)e\left(\frac{14}{45}\right) e(2845)e\left(\frac{28}{45}\right) e(1318)e\left(\frac{13}{18}\right) e(1415)e\left(\frac{14}{15}\right) e(1315)e\left(\frac{13}{15}\right) e(145)e\left(\frac{1}{45}\right) e(130)e\left(\frac{1}{30}\right) e(1145)e\left(\frac{11}{45}\right) e(245)e\left(\frac{2}{45}\right) e(2990)e\left(\frac{29}{90}\right)
χ8325(5134,)\chi_{8325}(5134,\cdot) 11 11 e(4445)e\left(\frac{44}{45}\right) e(4345)e\left(\frac{43}{45}\right) e(118)e\left(\frac{1}{18}\right) e(1415)e\left(\frac{14}{15}\right) e(1315)e\left(\frac{13}{15}\right) e(1645)e\left(\frac{16}{45}\right) e(130)e\left(\frac{1}{30}\right) e(4145)e\left(\frac{41}{45}\right) e(3245)e\left(\frac{32}{45}\right) e(5990)e\left(\frac{59}{90}\right)
χ8325(5479,)\chi_{8325}(5479,\cdot) 11 11 e(2245)e\left(\frac{22}{45}\right) e(4445)e\left(\frac{44}{45}\right) e(518)e\left(\frac{5}{18}\right) e(715)e\left(\frac{7}{15}\right) e(1415)e\left(\frac{14}{15}\right) e(845)e\left(\frac{8}{45}\right) e(2330)e\left(\frac{23}{30}\right) e(4345)e\left(\frac{43}{45}\right) e(1645)e\left(\frac{16}{45}\right) e(790)e\left(\frac{7}{90}\right)
χ8325(5719,)\chi_{8325}(5719,\cdot) 11 11 e(3845)e\left(\frac{38}{45}\right) e(3145)e\left(\frac{31}{45}\right) e(718)e\left(\frac{7}{18}\right) e(815)e\left(\frac{8}{15}\right) e(115)e\left(\frac{1}{15}\right) e(2245)e\left(\frac{22}{45}\right) e(730)e\left(\frac{7}{30}\right) e(1745)e\left(\frac{17}{45}\right) e(4445)e\left(\frac{44}{45}\right) e(5390)e\left(\frac{53}{90}\right)
χ8325(5839,)\chi_{8325}(5839,\cdot) 11 11 e(1645)e\left(\frac{16}{45}\right) e(3245)e\left(\frac{32}{45}\right) e(1118)e\left(\frac{11}{18}\right) e(115)e\left(\frac{1}{15}\right) e(215)e\left(\frac{2}{15}\right) e(1445)e\left(\frac{14}{45}\right) e(2930)e\left(\frac{29}{30}\right) e(1945)e\left(\frac{19}{45}\right) e(2845)e\left(\frac{28}{45}\right) e(190)e\left(\frac{1}{90}\right)
χ8325(6109,)\chi_{8325}(6109,\cdot) 11 11 e(1945)e\left(\frac{19}{45}\right) e(3845)e\left(\frac{38}{45}\right) e(1718)e\left(\frac{17}{18}\right) e(415)e\left(\frac{4}{15}\right) e(815)e\left(\frac{8}{15}\right) e(1145)e\left(\frac{11}{45}\right) e(1130)e\left(\frac{11}{30}\right) e(3145)e\left(\frac{31}{45}\right) e(2245)e\left(\frac{22}{45}\right) e(4990)e\left(\frac{49}{90}\right)
χ8325(7144,)\chi_{8325}(7144,\cdot) 11 11 e(1345)e\left(\frac{13}{45}\right) e(2645)e\left(\frac{26}{45}\right) e(518)e\left(\frac{5}{18}\right) e(1315)e\left(\frac{13}{15}\right) e(1115)e\left(\frac{11}{15}\right) e(1745)e\left(\frac{17}{45}\right) e(1730)e\left(\frac{17}{30}\right) e(745)e\left(\frac{7}{45}\right) e(3445)e\left(\frac{34}{45}\right) e(4390)e\left(\frac{43}{90}\right)
χ8325(7384,)\chi_{8325}(7384,\cdot) 11 11 e(2945)e\left(\frac{29}{45}\right) e(1345)e\left(\frac{13}{45}\right) e(718)e\left(\frac{7}{18}\right) e(1415)e\left(\frac{14}{15}\right) e(1315)e\left(\frac{13}{15}\right) e(3145)e\left(\frac{31}{45}\right) e(130)e\left(\frac{1}{30}\right) e(2645)e\left(\frac{26}{45}\right) e(1745)e\left(\frac{17}{45}\right) e(8990)e\left(\frac{89}{90}\right)
χ8325(7504,)\chi_{8325}(7504,\cdot) 11 11 e(745)e\left(\frac{7}{45}\right) e(1445)e\left(\frac{14}{45}\right) e(1118)e\left(\frac{11}{18}\right) e(715)e\left(\frac{7}{15}\right) e(1415)e\left(\frac{14}{15}\right) e(2345)e\left(\frac{23}{45}\right) e(2330)e\left(\frac{23}{30}\right) e(2845)e\left(\frac{28}{45}\right) e(145)e\left(\frac{1}{45}\right) e(3790)e\left(\frac{37}{90}\right)
χ8325(8239,)\chi_{8325}(8239,\cdot) 11 11 e(4145)e\left(\frac{41}{45}\right) e(3745)e\left(\frac{37}{45}\right) e(1318)e\left(\frac{13}{18}\right) e(1115)e\left(\frac{11}{15}\right) e(715)e\left(\frac{7}{15}\right) e(1945)e\left(\frac{19}{45}\right) e(1930)e\left(\frac{19}{30}\right) e(2945)e\left(\frac{29}{45}\right) e(3845)e\left(\frac{38}{45}\right) e(1190)e\left(\frac{11}{90}\right)