from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8325, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([60,72,10]))
pari: [g,chi] = znchar(Mod(5011,8325))
χ8325(16,⋅)
χ8325(256,⋅)
χ8325(1291,⋅)
χ8325(1561,⋅)
χ8325(1681,⋅)
χ8325(1921,⋅)
χ8325(2266,⋅)
χ8325(2491,⋅)
χ8325(2956,⋅)
χ8325(3346,⋅)
χ8325(3586,⋅)
χ8325(3931,⋅)
χ8325(4156,⋅)
χ8325(4621,⋅)
χ8325(4891,⋅)
χ8325(5011,⋅)
χ8325(5596,⋅)
χ8325(5821,⋅)
χ8325(6286,⋅)
χ8325(6556,⋅)
χ8325(6916,⋅)
χ8325(7261,⋅)
χ8325(7486,⋅)
χ8325(8221,⋅)
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(3701,7327,5626) → (e(32),e(54),e(91))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 | 16 | 17 | 19 |
χ8325(5011,a) |
1 | 1 | e(4526) | e(457) | e(92) | e(1511) | e(54) | e(4534) | e(54) | e(4514) | e(458) | e(4513) |