Properties

Label 8325.ie
Modulus $8325$
Conductor $8325$
Order $45$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8325, base_ring=CyclotomicField(90))
 
M = H._module
 
chi = DirichletCharacter(H, M([60,18,10]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(16,8325))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8325\)
Conductor: \(8325\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(45\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{45})$
Fixed field: Number field defined by a degree 45 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(13\) \(14\) \(16\) \(17\) \(19\)
\(\chi_{8325}(16,\cdot)\) \(1\) \(1\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{22}{45}\right)\)
\(\chi_{8325}(256,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{44}{45}\right)\)
\(\chi_{8325}(1291,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{2}{45}\right)\)
\(\chi_{8325}(1561,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{23}{45}\right)\)
\(\chi_{8325}(1681,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{4}{45}\right)\)
\(\chi_{8325}(1921,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{26}{45}\right)\)
\(\chi_{8325}(2266,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{7}{45}\right)\)
\(\chi_{8325}(2491,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{37}{45}\right)\)
\(\chi_{8325}(2956,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{29}{45}\right)\)
\(\chi_{8325}(3346,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{31}{45}\right)\)
\(\chi_{8325}(3586,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{8}{45}\right)\)
\(\chi_{8325}(3931,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{34}{45}\right)\)
\(\chi_{8325}(4156,\cdot)\) \(1\) \(1\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{19}{45}\right)\)
\(\chi_{8325}(4621,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{11}{45}\right)\)
\(\chi_{8325}(4891,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{32}{45}\right)\)
\(\chi_{8325}(5011,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{13}{45}\right)\)
\(\chi_{8325}(5596,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{16}{45}\right)\)
\(\chi_{8325}(5821,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{1}{45}\right)\)
\(\chi_{8325}(6286,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{38}{45}\right)\)
\(\chi_{8325}(6556,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{14}{45}\right)\)
\(\chi_{8325}(6916,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{17}{45}\right)\)
\(\chi_{8325}(7261,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{43}{45}\right)\)
\(\chi_{8325}(7486,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{28}{45}\right)\)
\(\chi_{8325}(8221,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{41}{45}\right)\)