Properties

Label 8512.1675
Modulus $8512$
Conductor $8512$
Order $144$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8512, base_ring=CyclotomicField(144))
 
M = H._module
 
chi = DirichletCharacter(H, M([72,45,48,104]))
 
pari: [g,chi] = znchar(Mod(1675,8512))
 

Basic properties

Modulus: \(8512\)
Conductor: \(8512\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(144\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8512.md

\(\chi_{8512}(67,\cdot)\) \(\chi_{8512}(611,\cdot)\) \(\chi_{8512}(667,\cdot)\) \(\chi_{8512}(851,\cdot)\) \(\chi_{8512}(963,\cdot)\) \(\chi_{8512}(1059,\cdot)\) \(\chi_{8512}(1131,\cdot)\) \(\chi_{8512}(1675,\cdot)\) \(\chi_{8512}(1731,\cdot)\) \(\chi_{8512}(1915,\cdot)\) \(\chi_{8512}(2027,\cdot)\) \(\chi_{8512}(2123,\cdot)\) \(\chi_{8512}(2195,\cdot)\) \(\chi_{8512}(2739,\cdot)\) \(\chi_{8512}(2795,\cdot)\) \(\chi_{8512}(2979,\cdot)\) \(\chi_{8512}(3091,\cdot)\) \(\chi_{8512}(3187,\cdot)\) \(\chi_{8512}(3259,\cdot)\) \(\chi_{8512}(3803,\cdot)\) \(\chi_{8512}(3859,\cdot)\) \(\chi_{8512}(4043,\cdot)\) \(\chi_{8512}(4155,\cdot)\) \(\chi_{8512}(4251,\cdot)\) \(\chi_{8512}(4323,\cdot)\) \(\chi_{8512}(4867,\cdot)\) \(\chi_{8512}(4923,\cdot)\) \(\chi_{8512}(5107,\cdot)\) \(\chi_{8512}(5219,\cdot)\) \(\chi_{8512}(5315,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{144})$
Fixed field: Number field defined by a degree 144 polynomial (not computed)

Values on generators

\((5055,6917,7297,3137)\) → \((-1,e\left(\frac{5}{16}\right),e\left(\frac{1}{3}\right),e\left(\frac{13}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(23\)\(25\)\(27\)
\( \chi_{ 8512 }(1675, a) \) \(1\)\(1\)\(e\left(\frac{23}{144}\right)\)\(e\left(\frac{77}{144}\right)\)\(e\left(\frac{23}{72}\right)\)\(e\left(\frac{1}{16}\right)\)\(e\left(\frac{43}{144}\right)\)\(e\left(\frac{25}{36}\right)\)\(e\left(\frac{11}{36}\right)\)\(e\left(\frac{71}{72}\right)\)\(e\left(\frac{5}{72}\right)\)\(e\left(\frac{23}{48}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8512 }(1675,a) \;\) at \(\;a = \) e.g. 2