sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8512, base_ring=CyclotomicField(144))
M = H._module
chi = DirichletCharacter(H, M([72,99,96,40]))
pari:[g,chi] = znchar(Mod(5219,8512))
Modulus: | 8512 | |
Conductor: | 8512 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 144 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ8512(67,⋅)
χ8512(611,⋅)
χ8512(667,⋅)
χ8512(851,⋅)
χ8512(963,⋅)
χ8512(1059,⋅)
χ8512(1131,⋅)
χ8512(1675,⋅)
χ8512(1731,⋅)
χ8512(1915,⋅)
χ8512(2027,⋅)
χ8512(2123,⋅)
χ8512(2195,⋅)
χ8512(2739,⋅)
χ8512(2795,⋅)
χ8512(2979,⋅)
χ8512(3091,⋅)
χ8512(3187,⋅)
χ8512(3259,⋅)
χ8512(3803,⋅)
χ8512(3859,⋅)
χ8512(4043,⋅)
χ8512(4155,⋅)
χ8512(4251,⋅)
χ8512(4323,⋅)
χ8512(4867,⋅)
χ8512(4923,⋅)
χ8512(5107,⋅)
χ8512(5219,⋅)
χ8512(5315,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(5055,6917,7297,3137) → (−1,e(1611),e(32),e(185))
a |
−1 | 1 | 3 | 5 | 9 | 11 | 13 | 15 | 17 | 23 | 25 | 27 |
χ8512(5219,a) |
1 | 1 | e(144121) | e(14467) | e(7249) | e(1615) | e(144101) | e(3611) | e(3625) | e(721) | e(7267) | e(4825) |
sage:chi.jacobi_sum(n)