Properties

Label 8512.5219
Modulus 85128512
Conductor 85128512
Order 144144
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8512, base_ring=CyclotomicField(144)) M = H._module chi = DirichletCharacter(H, M([72,99,96,40]))
 
Copy content pari:[g,chi] = znchar(Mod(5219,8512))
 

Basic properties

Modulus: 85128512
Conductor: 85128512
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 144144
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8512.md

χ8512(67,)\chi_{8512}(67,\cdot) χ8512(611,)\chi_{8512}(611,\cdot) χ8512(667,)\chi_{8512}(667,\cdot) χ8512(851,)\chi_{8512}(851,\cdot) χ8512(963,)\chi_{8512}(963,\cdot) χ8512(1059,)\chi_{8512}(1059,\cdot) χ8512(1131,)\chi_{8512}(1131,\cdot) χ8512(1675,)\chi_{8512}(1675,\cdot) χ8512(1731,)\chi_{8512}(1731,\cdot) χ8512(1915,)\chi_{8512}(1915,\cdot) χ8512(2027,)\chi_{8512}(2027,\cdot) χ8512(2123,)\chi_{8512}(2123,\cdot) χ8512(2195,)\chi_{8512}(2195,\cdot) χ8512(2739,)\chi_{8512}(2739,\cdot) χ8512(2795,)\chi_{8512}(2795,\cdot) χ8512(2979,)\chi_{8512}(2979,\cdot) χ8512(3091,)\chi_{8512}(3091,\cdot) χ8512(3187,)\chi_{8512}(3187,\cdot) χ8512(3259,)\chi_{8512}(3259,\cdot) χ8512(3803,)\chi_{8512}(3803,\cdot) χ8512(3859,)\chi_{8512}(3859,\cdot) χ8512(4043,)\chi_{8512}(4043,\cdot) χ8512(4155,)\chi_{8512}(4155,\cdot) χ8512(4251,)\chi_{8512}(4251,\cdot) χ8512(4323,)\chi_{8512}(4323,\cdot) χ8512(4867,)\chi_{8512}(4867,\cdot) χ8512(4923,)\chi_{8512}(4923,\cdot) χ8512(5107,)\chi_{8512}(5107,\cdot) χ8512(5219,)\chi_{8512}(5219,\cdot) χ8512(5315,)\chi_{8512}(5315,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ144)\Q(\zeta_{144})
Fixed field: Number field defined by a degree 144 polynomial (not computed)

Values on generators

(5055,6917,7297,3137)(5055,6917,7297,3137)(1,e(1116),e(23),e(518))(-1,e\left(\frac{11}{16}\right),e\left(\frac{2}{3}\right),e\left(\frac{5}{18}\right))

First values

aa 1-1113355991111131315151717232325252727
χ8512(5219,a) \chi_{ 8512 }(5219, a) 1111e(121144)e\left(\frac{121}{144}\right)e(67144)e\left(\frac{67}{144}\right)e(4972)e\left(\frac{49}{72}\right)e(1516)e\left(\frac{15}{16}\right)e(101144)e\left(\frac{101}{144}\right)e(1136)e\left(\frac{11}{36}\right)e(2536)e\left(\frac{25}{36}\right)e(172)e\left(\frac{1}{72}\right)e(6772)e\left(\frac{67}{72}\right)e(2548)e\left(\frac{25}{48}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ8512(5219,a)   \chi_{ 8512 }(5219,a) \; at   a=\;a = e.g. 2