Properties

Label 8512.71
Modulus $8512$
Conductor $608$
Order $72$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8512, base_ring=CyclotomicField(72))
 
M = H._module
 
chi = DirichletCharacter(H, M([36,45,0,28]))
 
pari: [g,chi] = znchar(Mod(71,8512))
 

Basic properties

Modulus: \(8512\)
Conductor: \(608\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(72\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{608}(299,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8512.kv

\(\chi_{8512}(71,\cdot)\) \(\chi_{8512}(295,\cdot)\) \(\chi_{8512}(743,\cdot)\) \(\chi_{8512}(1079,\cdot)\) \(\chi_{8512}(1191,\cdot)\) \(\chi_{8512}(1751,\cdot)\) \(\chi_{8512}(2199,\cdot)\) \(\chi_{8512}(2423,\cdot)\) \(\chi_{8512}(2871,\cdot)\) \(\chi_{8512}(3207,\cdot)\) \(\chi_{8512}(3319,\cdot)\) \(\chi_{8512}(3879,\cdot)\) \(\chi_{8512}(4327,\cdot)\) \(\chi_{8512}(4551,\cdot)\) \(\chi_{8512}(4999,\cdot)\) \(\chi_{8512}(5335,\cdot)\) \(\chi_{8512}(5447,\cdot)\) \(\chi_{8512}(6007,\cdot)\) \(\chi_{8512}(6455,\cdot)\) \(\chi_{8512}(6679,\cdot)\) \(\chi_{8512}(7127,\cdot)\) \(\chi_{8512}(7463,\cdot)\) \(\chi_{8512}(7575,\cdot)\) \(\chi_{8512}(8135,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{72})$
Fixed field: Number field defined by a degree 72 polynomial

Values on generators

\((5055,6917,7297,3137)\) → \((-1,e\left(\frac{5}{8}\right),1,e\left(\frac{7}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(23\)\(25\)\(27\)
\( \chi_{ 8512 }(71, a) \) \(1\)\(1\)\(e\left(\frac{31}{72}\right)\)\(e\left(\frac{61}{72}\right)\)\(e\left(\frac{31}{36}\right)\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{23}{72}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{1}{36}\right)\)\(e\left(\frac{25}{36}\right)\)\(e\left(\frac{7}{24}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8512 }(71,a) \;\) at \(\;a = \) e.g. 2