Properties

Label 8788.1169
Modulus 87888788
Conductor 21972197
Order 338338
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8788, base_ring=CyclotomicField(338))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,161]))
 
pari: [g,chi] = znchar(Mod(1169,8788))
 

Basic properties

Modulus: 87888788
Conductor: 21972197
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 338338
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ2197(1169,)\chi_{2197}(1169,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8788.ba

χ8788(25,)\chi_{8788}(25,\cdot) χ8788(77,)\chi_{8788}(77,\cdot) χ8788(129,)\chi_{8788}(129,\cdot) χ8788(181,)\chi_{8788}(181,\cdot) χ8788(233,)\chi_{8788}(233,\cdot) χ8788(285,)\chi_{8788}(285,\cdot) χ8788(389,)\chi_{8788}(389,\cdot) χ8788(441,)\chi_{8788}(441,\cdot) χ8788(493,)\chi_{8788}(493,\cdot) χ8788(545,)\chi_{8788}(545,\cdot) χ8788(597,)\chi_{8788}(597,\cdot) χ8788(649,)\chi_{8788}(649,\cdot) χ8788(701,)\chi_{8788}(701,\cdot) χ8788(753,)\chi_{8788}(753,\cdot) χ8788(805,)\chi_{8788}(805,\cdot) χ8788(857,)\chi_{8788}(857,\cdot) χ8788(909,)\chi_{8788}(909,\cdot) χ8788(961,)\chi_{8788}(961,\cdot) χ8788(1065,)\chi_{8788}(1065,\cdot) χ8788(1117,)\chi_{8788}(1117,\cdot) χ8788(1169,)\chi_{8788}(1169,\cdot) χ8788(1221,)\chi_{8788}(1221,\cdot) χ8788(1273,)\chi_{8788}(1273,\cdot) χ8788(1325,)\chi_{8788}(1325,\cdot) χ8788(1377,)\chi_{8788}(1377,\cdot) χ8788(1429,)\chi_{8788}(1429,\cdot) χ8788(1481,)\chi_{8788}(1481,\cdot) χ8788(1533,)\chi_{8788}(1533,\cdot) χ8788(1585,)\chi_{8788}(1585,\cdot) χ8788(1637,)\chi_{8788}(1637,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ169)\Q(\zeta_{169})
Fixed field: Number field defined by a degree 338 polynomial (not computed)

Values on generators

(4395,6593)(4395,6593)(1,e(161338))(1,e\left(\frac{161}{338}\right))

First values

aa 1-11133557799111115151717191921212323
χ8788(1169,a) \chi_{ 8788 }(1169, a) 1111e(128169)e\left(\frac{128}{169}\right)e(279338)e\left(\frac{279}{338}\right)e(15338)e\left(\frac{15}{338}\right)e(87169)e\left(\frac{87}{169}\right)e(229338)e\left(\frac{229}{338}\right)e(197338)e\left(\frac{197}{338}\right)e(79169)e\left(\frac{79}{169}\right)e(926)e\left(\frac{9}{26}\right)e(271338)e\left(\frac{271}{338}\right)e(713)e\left(\frac{7}{13}\right)
sage: chi.jacobi_sum(n)
 
χ8788(1169,a)   \chi_{ 8788 }(1169,a) \; at   a=\;a = e.g. 2