Properties

Label 8788.753
Modulus $8788$
Conductor $2197$
Order $338$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8788, base_ring=CyclotomicField(338))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,87]))
 
pari: [g,chi] = znchar(Mod(753,8788))
 

Basic properties

Modulus: \(8788\)
Conductor: \(2197\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(338\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2197}(753,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8788.ba

\(\chi_{8788}(25,\cdot)\) \(\chi_{8788}(77,\cdot)\) \(\chi_{8788}(129,\cdot)\) \(\chi_{8788}(181,\cdot)\) \(\chi_{8788}(233,\cdot)\) \(\chi_{8788}(285,\cdot)\) \(\chi_{8788}(389,\cdot)\) \(\chi_{8788}(441,\cdot)\) \(\chi_{8788}(493,\cdot)\) \(\chi_{8788}(545,\cdot)\) \(\chi_{8788}(597,\cdot)\) \(\chi_{8788}(649,\cdot)\) \(\chi_{8788}(701,\cdot)\) \(\chi_{8788}(753,\cdot)\) \(\chi_{8788}(805,\cdot)\) \(\chi_{8788}(857,\cdot)\) \(\chi_{8788}(909,\cdot)\) \(\chi_{8788}(961,\cdot)\) \(\chi_{8788}(1065,\cdot)\) \(\chi_{8788}(1117,\cdot)\) \(\chi_{8788}(1169,\cdot)\) \(\chi_{8788}(1221,\cdot)\) \(\chi_{8788}(1273,\cdot)\) \(\chi_{8788}(1325,\cdot)\) \(\chi_{8788}(1377,\cdot)\) \(\chi_{8788}(1429,\cdot)\) \(\chi_{8788}(1481,\cdot)\) \(\chi_{8788}(1533,\cdot)\) \(\chi_{8788}(1585,\cdot)\) \(\chi_{8788}(1637,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{169})$
Fixed field: Number field defined by a degree 338 polynomial (not computed)

Values on generators

\((4395,6593)\) → \((1,e\left(\frac{87}{338}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 8788 }(753, a) \) \(1\)\(1\)\(e\left(\frac{129}{169}\right)\)\(e\left(\frac{29}{338}\right)\)\(e\left(\frac{27}{338}\right)\)\(e\left(\frac{89}{169}\right)\)\(e\left(\frac{277}{338}\right)\)\(e\left(\frac{287}{338}\right)\)\(e\left(\frac{7}{169}\right)\)\(e\left(\frac{11}{26}\right)\)\(e\left(\frac{285}{338}\right)\)\(e\left(\frac{10}{13}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8788 }(753,a) \;\) at \(\;a = \) e.g. 2