from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8788, base_ring=CyclotomicField(1014))
M = H._module
chi = DirichletCharacter(H, M([0,415]))
pari: [g,chi] = znchar(Mod(121,8788))
χ8788(17,⋅)
χ8788(49,⋅)
χ8788(69,⋅)
χ8788(101,⋅)
χ8788(121,⋅)
χ8788(153,⋅)
χ8788(173,⋅)
χ8788(205,⋅)
χ8788(225,⋅)
χ8788(257,⋅)
χ8788(277,⋅)
χ8788(309,⋅)
χ8788(329,⋅)
χ8788(381,⋅)
χ8788(413,⋅)
χ8788(433,⋅)
χ8788(465,⋅)
χ8788(517,⋅)
χ8788(537,⋅)
χ8788(569,⋅)
χ8788(589,⋅)
χ8788(621,⋅)
χ8788(641,⋅)
χ8788(673,⋅)
χ8788(693,⋅)
χ8788(725,⋅)
χ8788(745,⋅)
χ8788(777,⋅)
χ8788(797,⋅)
χ8788(829,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(4395,6593) → (1,e(1014415))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 15 | 17 | 19 | 21 | 23 |
χ8788(121,a) |
1 | 1 | e(507458) | e(338309) | e(1014257) | e(507409) | e(1014859) | e(1014829) | e(507148) | e(7871) | e(33853) | e(3935) |