Properties

Label 8788.69
Modulus 87888788
Conductor 21972197
Order 10141014
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8788, base_ring=CyclotomicField(1014))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,205]))
 
pari: [g,chi] = znchar(Mod(69,8788))
 

Basic properties

Modulus: 87888788
Conductor: 21972197
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 10141014
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ2197(69,)\chi_{2197}(69,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8788.bg

χ8788(17,)\chi_{8788}(17,\cdot) χ8788(49,)\chi_{8788}(49,\cdot) χ8788(69,)\chi_{8788}(69,\cdot) χ8788(101,)\chi_{8788}(101,\cdot) χ8788(121,)\chi_{8788}(121,\cdot) χ8788(153,)\chi_{8788}(153,\cdot) χ8788(173,)\chi_{8788}(173,\cdot) χ8788(205,)\chi_{8788}(205,\cdot) χ8788(225,)\chi_{8788}(225,\cdot) χ8788(257,)\chi_{8788}(257,\cdot) χ8788(277,)\chi_{8788}(277,\cdot) χ8788(309,)\chi_{8788}(309,\cdot) χ8788(329,)\chi_{8788}(329,\cdot) χ8788(381,)\chi_{8788}(381,\cdot) χ8788(413,)\chi_{8788}(413,\cdot) χ8788(433,)\chi_{8788}(433,\cdot) χ8788(465,)\chi_{8788}(465,\cdot) χ8788(517,)\chi_{8788}(517,\cdot) χ8788(537,)\chi_{8788}(537,\cdot) χ8788(569,)\chi_{8788}(569,\cdot) χ8788(589,)\chi_{8788}(589,\cdot) χ8788(621,)\chi_{8788}(621,\cdot) χ8788(641,)\chi_{8788}(641,\cdot) χ8788(673,)\chi_{8788}(673,\cdot) χ8788(693,)\chi_{8788}(693,\cdot) χ8788(725,)\chi_{8788}(725,\cdot) χ8788(745,)\chi_{8788}(745,\cdot) χ8788(777,)\chi_{8788}(777,\cdot) χ8788(797,)\chi_{8788}(797,\cdot) χ8788(829,)\chi_{8788}(829,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ507)\Q(\zeta_{507})
Fixed field: Number field defined by a degree 1014 polynomial (not computed)

Values on generators

(4395,6593)(4395,6593)(1,e(2051014))(1,e\left(\frac{205}{1014}\right))

First values

aa 1-11133557799111115151717191921212323
χ8788(69,a) \chi_{ 8788 }(69, a) 1111e(269507)e\left(\frac{269}{507}\right)e(173338)e\left(\frac{173}{338}\right)e(171014)e\left(\frac{17}{1014}\right)e(31507)e\left(\frac{31}{507}\right)e(9131014)e\left(\frac{913}{1014}\right)e(431014)e\left(\frac{43}{1014}\right)e(67507)e\left(\frac{67}{507}\right)e(578)e\left(\frac{5}{78}\right)e(185338)e\left(\frac{185}{338}\right)e(1439)e\left(\frac{14}{39}\right)
sage: chi.jacobi_sum(n)
 
χ8788(69,a)   \chi_{ 8788 }(69,a) \; at   a=\;a = e.g. 2