Properties

Label 8788.29
Modulus $8788$
Conductor $2197$
Order $507$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8788, base_ring=CyclotomicField(1014))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,956]))
 
pari: [g,chi] = znchar(Mod(29,8788))
 

Basic properties

Modulus: \(8788\)
Conductor: \(2197\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(507\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2197}(29,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8788.bc

\(\chi_{8788}(9,\cdot)\) \(\chi_{8788}(29,\cdot)\) \(\chi_{8788}(61,\cdot)\) \(\chi_{8788}(81,\cdot)\) \(\chi_{8788}(113,\cdot)\) \(\chi_{8788}(133,\cdot)\) \(\chi_{8788}(165,\cdot)\) \(\chi_{8788}(185,\cdot)\) \(\chi_{8788}(217,\cdot)\) \(\chi_{8788}(237,\cdot)\) \(\chi_{8788}(269,\cdot)\) \(\chi_{8788}(289,\cdot)\) \(\chi_{8788}(321,\cdot)\) \(\chi_{8788}(341,\cdot)\) \(\chi_{8788}(373,\cdot)\) \(\chi_{8788}(393,\cdot)\) \(\chi_{8788}(425,\cdot)\) \(\chi_{8788}(445,\cdot)\) \(\chi_{8788}(477,\cdot)\) \(\chi_{8788}(497,\cdot)\) \(\chi_{8788}(549,\cdot)\) \(\chi_{8788}(581,\cdot)\) \(\chi_{8788}(601,\cdot)\) \(\chi_{8788}(633,\cdot)\) \(\chi_{8788}(685,\cdot)\) \(\chi_{8788}(705,\cdot)\) \(\chi_{8788}(737,\cdot)\) \(\chi_{8788}(757,\cdot)\) \(\chi_{8788}(789,\cdot)\) \(\chi_{8788}(809,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{507})$
Fixed field: Number field defined by a degree 507 polynomial (not computed)

Values on generators

\((4395,6593)\) → \((1,e\left(\frac{478}{507}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 8788 }(29, a) \) \(1\)\(1\)\(e\left(\frac{421}{507}\right)\)\(e\left(\frac{147}{169}\right)\)\(e\left(\frac{329}{507}\right)\)\(e\left(\frac{335}{507}\right)\)\(e\left(\frac{133}{507}\right)\)\(e\left(\frac{355}{507}\right)\)\(e\left(\frac{446}{507}\right)\)\(e\left(\frac{5}{39}\right)\)\(e\left(\frac{81}{169}\right)\)\(e\left(\frac{28}{39}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8788 }(29,a) \;\) at \(\;a = \) e.g. 2