Properties

Label 8788.29
Modulus 87888788
Conductor 21972197
Order 507507
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8788, base_ring=CyclotomicField(1014))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,956]))
 
pari: [g,chi] = znchar(Mod(29,8788))
 

Basic properties

Modulus: 87888788
Conductor: 21972197
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 507507
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ2197(29,)\chi_{2197}(29,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8788.bc

χ8788(9,)\chi_{8788}(9,\cdot) χ8788(29,)\chi_{8788}(29,\cdot) χ8788(61,)\chi_{8788}(61,\cdot) χ8788(81,)\chi_{8788}(81,\cdot) χ8788(113,)\chi_{8788}(113,\cdot) χ8788(133,)\chi_{8788}(133,\cdot) χ8788(165,)\chi_{8788}(165,\cdot) χ8788(185,)\chi_{8788}(185,\cdot) χ8788(217,)\chi_{8788}(217,\cdot) χ8788(237,)\chi_{8788}(237,\cdot) χ8788(269,)\chi_{8788}(269,\cdot) χ8788(289,)\chi_{8788}(289,\cdot) χ8788(321,)\chi_{8788}(321,\cdot) χ8788(341,)\chi_{8788}(341,\cdot) χ8788(373,)\chi_{8788}(373,\cdot) χ8788(393,)\chi_{8788}(393,\cdot) χ8788(425,)\chi_{8788}(425,\cdot) χ8788(445,)\chi_{8788}(445,\cdot) χ8788(477,)\chi_{8788}(477,\cdot) χ8788(497,)\chi_{8788}(497,\cdot) χ8788(549,)\chi_{8788}(549,\cdot) χ8788(581,)\chi_{8788}(581,\cdot) χ8788(601,)\chi_{8788}(601,\cdot) χ8788(633,)\chi_{8788}(633,\cdot) χ8788(685,)\chi_{8788}(685,\cdot) χ8788(705,)\chi_{8788}(705,\cdot) χ8788(737,)\chi_{8788}(737,\cdot) χ8788(757,)\chi_{8788}(757,\cdot) χ8788(789,)\chi_{8788}(789,\cdot) χ8788(809,)\chi_{8788}(809,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ507)\Q(\zeta_{507})
Fixed field: Number field defined by a degree 507 polynomial (not computed)

Values on generators

(4395,6593)(4395,6593)(1,e(478507))(1,e\left(\frac{478}{507}\right))

First values

aa 1-11133557799111115151717191921212323
χ8788(29,a) \chi_{ 8788 }(29, a) 1111e(421507)e\left(\frac{421}{507}\right)e(147169)e\left(\frac{147}{169}\right)e(329507)e\left(\frac{329}{507}\right)e(335507)e\left(\frac{335}{507}\right)e(133507)e\left(\frac{133}{507}\right)e(355507)e\left(\frac{355}{507}\right)e(446507)e\left(\frac{446}{507}\right)e(539)e\left(\frac{5}{39}\right)e(81169)e\left(\frac{81}{169}\right)e(2839)e\left(\frac{28}{39}\right)
sage: chi.jacobi_sum(n)
 
χ8788(29,a)   \chi_{ 8788 }(29,a) \; at   a=\;a = e.g. 2