from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8788, base_ring=CyclotomicField(1014))
M = H._module
chi = DirichletCharacter(H, M([0,982]))
pari: [g,chi] = znchar(Mod(9,8788))
χ8788(9,⋅)
χ8788(29,⋅)
χ8788(61,⋅)
χ8788(81,⋅)
χ8788(113,⋅)
χ8788(133,⋅)
χ8788(165,⋅)
χ8788(185,⋅)
χ8788(217,⋅)
χ8788(237,⋅)
χ8788(269,⋅)
χ8788(289,⋅)
χ8788(321,⋅)
χ8788(341,⋅)
χ8788(373,⋅)
χ8788(393,⋅)
χ8788(425,⋅)
χ8788(445,⋅)
χ8788(477,⋅)
χ8788(497,⋅)
χ8788(549,⋅)
χ8788(581,⋅)
χ8788(601,⋅)
χ8788(633,⋅)
χ8788(685,⋅)
χ8788(705,⋅)
χ8788(737,⋅)
χ8788(757,⋅)
χ8788(789,⋅)
χ8788(809,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(4395,6593) → (1,e(507491))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 15 | 17 | 19 | 21 | 23 |
χ8788(9,a) |
1 | 1 | e(5075) | e(16917) | e(507199) | e(50710) | e(507458) | e(50756) | e(507316) | e(3931) | e(16968) | e(392) |