Properties

Label 8788.6999
Modulus $8788$
Conductor $676$
Order $52$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8788, base_ring=CyclotomicField(52))
 
M = H._module
 
chi = DirichletCharacter(H, M([26,15]))
 
pari: [g,chi] = znchar(Mod(6999,8788))
 

Basic properties

Modulus: \(8788\)
Conductor: \(676\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(52\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{676}(83,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8788.s

\(\chi_{8788}(99,\cdot)\) \(\chi_{8788}(775,\cdot)\) \(\chi_{8788}(915,\cdot)\) \(\chi_{8788}(1451,\cdot)\) \(\chi_{8788}(1591,\cdot)\) \(\chi_{8788}(2127,\cdot)\) \(\chi_{8788}(2267,\cdot)\) \(\chi_{8788}(2803,\cdot)\) \(\chi_{8788}(2943,\cdot)\) \(\chi_{8788}(3479,\cdot)\) \(\chi_{8788}(3619,\cdot)\) \(\chi_{8788}(4295,\cdot)\) \(\chi_{8788}(4831,\cdot)\) \(\chi_{8788}(4971,\cdot)\) \(\chi_{8788}(5507,\cdot)\) \(\chi_{8788}(5647,\cdot)\) \(\chi_{8788}(6183,\cdot)\) \(\chi_{8788}(6323,\cdot)\) \(\chi_{8788}(6859,\cdot)\) \(\chi_{8788}(6999,\cdot)\) \(\chi_{8788}(7535,\cdot)\) \(\chi_{8788}(7675,\cdot)\) \(\chi_{8788}(8211,\cdot)\) \(\chi_{8788}(8351,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{52})$
Fixed field: Number field defined by a degree 52 polynomial

Values on generators

\((4395,6593)\) → \((-1,e\left(\frac{15}{52}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 8788 }(6999, a) \) \(1\)\(1\)\(e\left(\frac{7}{26}\right)\)\(e\left(\frac{31}{52}\right)\)\(e\left(\frac{19}{52}\right)\)\(e\left(\frac{7}{13}\right)\)\(e\left(\frac{11}{52}\right)\)\(e\left(\frac{45}{52}\right)\)\(e\left(\frac{3}{26}\right)\)\(i\)\(e\left(\frac{33}{52}\right)\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8788 }(6999,a) \;\) at \(\;a = \) e.g. 2