Properties

Label 8788.s
Modulus 87888788
Conductor 676676
Order 5252
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8788, base_ring=CyclotomicField(52))
 
M = H._module
 
chi = DirichletCharacter(H, M([26,9]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(99,8788))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 87888788
Conductor: 676676
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 5252
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 676.s
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ52)\Q(\zeta_{52})
Fixed field: Number field defined by a degree 52 polynomial

Characters in Galois orbit

Character 1-1 11 33 55 77 99 1111 1515 1717 1919 2121 2323
χ8788(99,)\chi_{8788}(99,\cdot) 11 11 e(2526)e\left(\frac{25}{26}\right) e(2952)e\left(\frac{29}{52}\right) e(152)e\left(\frac{1}{52}\right) e(1213)e\left(\frac{12}{13}\right) e(1752)e\left(\frac{17}{52}\right) e(2752)e\left(\frac{27}{52}\right) e(726)e\left(\frac{7}{26}\right) i-i e(5152)e\left(\frac{51}{52}\right) 11
χ8788(775,)\chi_{8788}(775,\cdot) 11 11 e(2326)e\left(\frac{23}{26}\right) e(952)e\left(\frac{9}{52}\right) e(2952)e\left(\frac{29}{52}\right) e(1013)e\left(\frac{10}{13}\right) e(2552)e\left(\frac{25}{52}\right) e(352)e\left(\frac{3}{52}\right) e(2126)e\left(\frac{21}{26}\right) i-i e(2352)e\left(\frac{23}{52}\right) 11
χ8788(915,)\chi_{8788}(915,\cdot) 11 11 e(1526)e\left(\frac{15}{26}\right) e(752)e\left(\frac{7}{52}\right) e(1152)e\left(\frac{11}{52}\right) e(213)e\left(\frac{2}{13}\right) e(3152)e\left(\frac{31}{52}\right) e(3752)e\left(\frac{37}{52}\right) e(2526)e\left(\frac{25}{26}\right) ii e(4152)e\left(\frac{41}{52}\right) 11
χ8788(1451,)\chi_{8788}(1451,\cdot) 11 11 e(2126)e\left(\frac{21}{26}\right) e(4152)e\left(\frac{41}{52}\right) e(552)e\left(\frac{5}{52}\right) e(813)e\left(\frac{8}{13}\right) e(3352)e\left(\frac{33}{52}\right) e(3152)e\left(\frac{31}{52}\right) e(926)e\left(\frac{9}{26}\right) i-i e(4752)e\left(\frac{47}{52}\right) 11
χ8788(1591,)\chi_{8788}(1591,\cdot) 11 11 e(1726)e\left(\frac{17}{26}\right) e(2752)e\left(\frac{27}{52}\right) e(3552)e\left(\frac{35}{52}\right) e(413)e\left(\frac{4}{13}\right) e(2352)e\left(\frac{23}{52}\right) e(952)e\left(\frac{9}{52}\right) e(1126)e\left(\frac{11}{26}\right) ii e(1752)e\left(\frac{17}{52}\right) 11
χ8788(2127,)\chi_{8788}(2127,\cdot) 11 11 e(1926)e\left(\frac{19}{26}\right) e(2152)e\left(\frac{21}{52}\right) e(3352)e\left(\frac{33}{52}\right) e(613)e\left(\frac{6}{13}\right) e(4152)e\left(\frac{41}{52}\right) e(752)e\left(\frac{7}{52}\right) e(2326)e\left(\frac{23}{26}\right) i-i e(1952)e\left(\frac{19}{52}\right) 11
χ8788(2267,)\chi_{8788}(2267,\cdot) 11 11 e(1926)e\left(\frac{19}{26}\right) e(4752)e\left(\frac{47}{52}\right) e(752)e\left(\frac{7}{52}\right) e(613)e\left(\frac{6}{13}\right) e(1552)e\left(\frac{15}{52}\right) e(3352)e\left(\frac{33}{52}\right) e(2326)e\left(\frac{23}{26}\right) ii e(4552)e\left(\frac{45}{52}\right) 11
χ8788(2803,)\chi_{8788}(2803,\cdot) 11 11 e(1726)e\left(\frac{17}{26}\right) e(152)e\left(\frac{1}{52}\right) e(952)e\left(\frac{9}{52}\right) e(413)e\left(\frac{4}{13}\right) e(4952)e\left(\frac{49}{52}\right) e(3552)e\left(\frac{35}{52}\right) e(1126)e\left(\frac{11}{26}\right) i-i e(4352)e\left(\frac{43}{52}\right) 11
χ8788(2943,)\chi_{8788}(2943,\cdot) 11 11 e(2126)e\left(\frac{21}{26}\right) e(1552)e\left(\frac{15}{52}\right) e(3152)e\left(\frac{31}{52}\right) e(813)e\left(\frac{8}{13}\right) e(752)e\left(\frac{7}{52}\right) e(552)e\left(\frac{5}{52}\right) e(926)e\left(\frac{9}{26}\right) ii e(2152)e\left(\frac{21}{52}\right) 11
χ8788(3479,)\chi_{8788}(3479,\cdot) 11 11 e(1526)e\left(\frac{15}{26}\right) e(3352)e\left(\frac{33}{52}\right) e(3752)e\left(\frac{37}{52}\right) e(213)e\left(\frac{2}{13}\right) e(552)e\left(\frac{5}{52}\right) e(1152)e\left(\frac{11}{52}\right) e(2526)e\left(\frac{25}{26}\right) i-i e(1552)e\left(\frac{15}{52}\right) 11
χ8788(3619,)\chi_{8788}(3619,\cdot) 11 11 e(2326)e\left(\frac{23}{26}\right) e(3552)e\left(\frac{35}{52}\right) e(352)e\left(\frac{3}{52}\right) e(1013)e\left(\frac{10}{13}\right) e(5152)e\left(\frac{51}{52}\right) e(2952)e\left(\frac{29}{52}\right) e(2126)e\left(\frac{21}{26}\right) ii e(4952)e\left(\frac{49}{52}\right) 11
χ8788(4295,)\chi_{8788}(4295,\cdot) 11 11 e(2526)e\left(\frac{25}{26}\right) e(352)e\left(\frac{3}{52}\right) e(2752)e\left(\frac{27}{52}\right) e(1213)e\left(\frac{12}{13}\right) e(4352)e\left(\frac{43}{52}\right) e(152)e\left(\frac{1}{52}\right) e(726)e\left(\frac{7}{26}\right) ii e(2552)e\left(\frac{25}{52}\right) 11
χ8788(4831,)\chi_{8788}(4831,\cdot) 11 11 e(1126)e\left(\frac{11}{26}\right) e(4552)e\left(\frac{45}{52}\right) e(4152)e\left(\frac{41}{52}\right) e(1113)e\left(\frac{11}{13}\right) e(2152)e\left(\frac{21}{52}\right) e(1552)e\left(\frac{15}{52}\right) e(126)e\left(\frac{1}{26}\right) i-i e(1152)e\left(\frac{11}{52}\right) 11
χ8788(4971,)\chi_{8788}(4971,\cdot) 11 11 e(126)e\left(\frac{1}{26}\right) e(2352)e\left(\frac{23}{52}\right) e(5152)e\left(\frac{51}{52}\right) e(113)e\left(\frac{1}{13}\right) e(3552)e\left(\frac{35}{52}\right) e(2552)e\left(\frac{25}{52}\right) e(1926)e\left(\frac{19}{26}\right) ii e(152)e\left(\frac{1}{52}\right) 11
χ8788(5507,)\chi_{8788}(5507,\cdot) 11 11 e(926)e\left(\frac{9}{26}\right) e(2552)e\left(\frac{25}{52}\right) e(1752)e\left(\frac{17}{52}\right) e(913)e\left(\frac{9}{13}\right) e(2952)e\left(\frac{29}{52}\right) e(4352)e\left(\frac{43}{52}\right) e(1526)e\left(\frac{15}{26}\right) i-i e(3552)e\left(\frac{35}{52}\right) 11
χ8788(5647,)\chi_{8788}(5647,\cdot) 11 11 e(326)e\left(\frac{3}{26}\right) e(4352)e\left(\frac{43}{52}\right) e(2352)e\left(\frac{23}{52}\right) e(313)e\left(\frac{3}{13}\right) e(2752)e\left(\frac{27}{52}\right) e(4952)e\left(\frac{49}{52}\right) e(526)e\left(\frac{5}{26}\right) ii e(2952)e\left(\frac{29}{52}\right) 11
χ8788(6183,)\chi_{8788}(6183,\cdot) 11 11 e(726)e\left(\frac{7}{26}\right) e(552)e\left(\frac{5}{52}\right) e(4552)e\left(\frac{45}{52}\right) e(713)e\left(\frac{7}{13}\right) e(3752)e\left(\frac{37}{52}\right) e(1952)e\left(\frac{19}{52}\right) e(326)e\left(\frac{3}{26}\right) i-i e(752)e\left(\frac{7}{52}\right) 11
χ8788(6323,)\chi_{8788}(6323,\cdot) 11 11 e(526)e\left(\frac{5}{26}\right) e(1152)e\left(\frac{11}{52}\right) e(4752)e\left(\frac{47}{52}\right) e(513)e\left(\frac{5}{13}\right) e(1952)e\left(\frac{19}{52}\right) e(2152)e\left(\frac{21}{52}\right) e(1726)e\left(\frac{17}{26}\right) ii e(552)e\left(\frac{5}{52}\right) 11
χ8788(6859,)\chi_{8788}(6859,\cdot) 11 11 e(526)e\left(\frac{5}{26}\right) e(3752)e\left(\frac{37}{52}\right) e(2152)e\left(\frac{21}{52}\right) e(513)e\left(\frac{5}{13}\right) e(4552)e\left(\frac{45}{52}\right) e(4752)e\left(\frac{47}{52}\right) e(1726)e\left(\frac{17}{26}\right) i-i e(3152)e\left(\frac{31}{52}\right) 11
χ8788(6999,)\chi_{8788}(6999,\cdot) 11 11 e(726)e\left(\frac{7}{26}\right) e(3152)e\left(\frac{31}{52}\right) e(1952)e\left(\frac{19}{52}\right) e(713)e\left(\frac{7}{13}\right) e(1152)e\left(\frac{11}{52}\right) e(4552)e\left(\frac{45}{52}\right) e(326)e\left(\frac{3}{26}\right) ii e(3352)e\left(\frac{33}{52}\right) 11
χ8788(7535,)\chi_{8788}(7535,\cdot) 11 11 e(326)e\left(\frac{3}{26}\right) e(1752)e\left(\frac{17}{52}\right) e(4952)e\left(\frac{49}{52}\right) e(313)e\left(\frac{3}{13}\right) e(152)e\left(\frac{1}{52}\right) e(2352)e\left(\frac{23}{52}\right) e(526)e\left(\frac{5}{26}\right) i-i e(352)e\left(\frac{3}{52}\right) 11
χ8788(7675,)\chi_{8788}(7675,\cdot) 11 11 e(926)e\left(\frac{9}{26}\right) e(5152)e\left(\frac{51}{52}\right) e(4352)e\left(\frac{43}{52}\right) e(913)e\left(\frac{9}{13}\right) e(352)e\left(\frac{3}{52}\right) e(1752)e\left(\frac{17}{52}\right) e(1526)e\left(\frac{15}{26}\right) ii e(952)e\left(\frac{9}{52}\right) 11
χ8788(8211,)\chi_{8788}(8211,\cdot) 11 11 e(126)e\left(\frac{1}{26}\right) e(4952)e\left(\frac{49}{52}\right) e(2552)e\left(\frac{25}{52}\right) e(113)e\left(\frac{1}{13}\right) e(952)e\left(\frac{9}{52}\right) e(5152)e\left(\frac{51}{52}\right) e(1926)e\left(\frac{19}{26}\right) i-i e(2752)e\left(\frac{27}{52}\right) 11
χ8788(8351,)\chi_{8788}(8351,\cdot) 11 11 e(1126)e\left(\frac{11}{26}\right) e(1952)e\left(\frac{19}{52}\right) e(1552)e\left(\frac{15}{52}\right) e(1113)e\left(\frac{11}{13}\right) e(4752)e\left(\frac{47}{52}\right) e(4152)e\left(\frac{41}{52}\right) e(126)e\left(\frac{1}{26}\right) ii e(3752)e\left(\frac{37}{52}\right) 11