from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8788, base_ring=CyclotomicField(338))
M = H._module
chi = DirichletCharacter(H, M([0,153]))
pari: [g,chi] = znchar(Mod(8761,8788))
χ8788(25,⋅)
χ8788(77,⋅)
χ8788(129,⋅)
χ8788(181,⋅)
χ8788(233,⋅)
χ8788(285,⋅)
χ8788(389,⋅)
χ8788(441,⋅)
χ8788(493,⋅)
χ8788(545,⋅)
χ8788(597,⋅)
χ8788(649,⋅)
χ8788(701,⋅)
χ8788(753,⋅)
χ8788(805,⋅)
χ8788(857,⋅)
χ8788(909,⋅)
χ8788(961,⋅)
χ8788(1065,⋅)
χ8788(1117,⋅)
χ8788(1169,⋅)
χ8788(1221,⋅)
χ8788(1273,⋅)
χ8788(1325,⋅)
χ8788(1377,⋅)
χ8788(1429,⋅)
χ8788(1481,⋅)
χ8788(1533,⋅)
χ8788(1585,⋅)
χ8788(1637,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(4395,6593) → (1,e(338153))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 15 | 17 | 19 | 21 | 23 |
χ8788(8761,a) |
1 | 1 | e(16987) | e(33851) | e(338199) | e(1695) | e(338289) | e(338225) | e(169158) | e(265) | e(33835) | e(131) |