Properties

Label 8800.2501
Modulus $8800$
Conductor $352$
Order $40$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8800, base_ring=CyclotomicField(40))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,5,0,8]))
 
pari: [g,chi] = znchar(Mod(2501,8800))
 

Basic properties

Modulus: \(8800\)
Conductor: \(352\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(40\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{352}(37,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8800.nn

\(\chi_{8800}(301,\cdot)\) \(\chi_{8800}(1301,\cdot)\) \(\chi_{8800}(1501,\cdot)\) \(\chi_{8800}(1901,\cdot)\) \(\chi_{8800}(2501,\cdot)\) \(\chi_{8800}(3501,\cdot)\) \(\chi_{8800}(3701,\cdot)\) \(\chi_{8800}(4101,\cdot)\) \(\chi_{8800}(4701,\cdot)\) \(\chi_{8800}(5701,\cdot)\) \(\chi_{8800}(5901,\cdot)\) \(\chi_{8800}(6301,\cdot)\) \(\chi_{8800}(6901,\cdot)\) \(\chi_{8800}(7901,\cdot)\) \(\chi_{8800}(8101,\cdot)\) \(\chi_{8800}(8501,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{40})\)
Fixed field: 40.40.96430685261162182749113906515642066253992366248338958954046471967872161601814528.1

Values on generators

\((2751,3301,4577,5601)\) → \((1,e\left(\frac{1}{8}\right),1,e\left(\frac{1}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 8800 }(2501, a) \) \(1\)\(1\)\(e\left(\frac{39}{40}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{3}{40}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{19}{40}\right)\)\(e\left(\frac{5}{8}\right)\)\(-i\)\(e\left(\frac{37}{40}\right)\)\(e\left(\frac{31}{40}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8800 }(2501,a) \;\) at \(\;a = \) e.g. 2