Properties

Label 8800.nn
Modulus $8800$
Conductor $352$
Order $40$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8800, base_ring=CyclotomicField(40))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,35,0,8]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(301,8800))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8800\)
Conductor: \(352\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(40\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 352.bf
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{40})\)
Fixed field: 40.40.96430685261162182749113906515642066253992366248338958954046471967872161601814528.1

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(13\) \(17\) \(19\) \(21\) \(23\) \(27\) \(29\)
\(\chi_{8800}(301,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{3}{8}\right)\) \(i\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{1}{40}\right)\)
\(\chi_{8800}(1301,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{1}{8}\right)\) \(-i\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{19}{40}\right)\)
\(\chi_{8800}(1501,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{7}{8}\right)\) \(i\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{37}{40}\right)\)
\(\chi_{8800}(1901,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{3}{8}\right)\) \(i\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{33}{40}\right)\)
\(\chi_{8800}(2501,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{5}{8}\right)\) \(-i\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{31}{40}\right)\)
\(\chi_{8800}(3501,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{3}{8}\right)\) \(i\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{9}{40}\right)\)
\(\chi_{8800}(3701,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{1}{8}\right)\) \(-i\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{27}{40}\right)\)
\(\chi_{8800}(4101,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{5}{8}\right)\) \(-i\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{23}{40}\right)\)
\(\chi_{8800}(4701,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{7}{8}\right)\) \(i\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{21}{40}\right)\)
\(\chi_{8800}(5701,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{5}{8}\right)\) \(-i\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{39}{40}\right)\)
\(\chi_{8800}(5901,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{3}{8}\right)\) \(i\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{17}{40}\right)\)
\(\chi_{8800}(6301,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{7}{8}\right)\) \(i\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{13}{40}\right)\)
\(\chi_{8800}(6901,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{1}{8}\right)\) \(-i\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{11}{40}\right)\)
\(\chi_{8800}(7901,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{7}{8}\right)\) \(i\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{29}{40}\right)\)
\(\chi_{8800}(8101,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{5}{8}\right)\) \(-i\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{7}{40}\right)\)
\(\chi_{8800}(8501,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{1}{8}\right)\) \(-i\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{3}{40}\right)\)