Properties

Label 8800.4693
Modulus $8800$
Conductor $1760$
Order $40$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8800, base_ring=CyclotomicField(40))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,25,30,28]))
 
pari: [g,chi] = znchar(Mod(4693,8800))
 

Basic properties

Modulus: \(8800\)
Conductor: \(1760\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(40\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1760}(1173,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8800.ow

\(\chi_{8800}(293,\cdot)\) \(\chi_{8800}(557,\cdot)\) \(\chi_{8800}(1493,\cdot)\) \(\chi_{8800}(1757,\cdot)\) \(\chi_{8800}(3093,\cdot)\) \(\chi_{8800}(3357,\cdot)\) \(\chi_{8800}(3493,\cdot)\) \(\chi_{8800}(3757,\cdot)\) \(\chi_{8800}(4693,\cdot)\) \(\chi_{8800}(4957,\cdot)\) \(\chi_{8800}(5893,\cdot)\) \(\chi_{8800}(6157,\cdot)\) \(\chi_{8800}(7493,\cdot)\) \(\chi_{8800}(7757,\cdot)\) \(\chi_{8800}(7893,\cdot)\) \(\chi_{8800}(8157,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{40})\)
Fixed field: 40.40.1314880012449506220994309247746612403564809108378301093397843089030698237952000000000000000000000000000000.1

Values on generators

\((2751,3301,4577,5601)\) → \((1,e\left(\frac{5}{8}\right),-i,e\left(\frac{7}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 8800 }(4693, a) \) \(1\)\(1\)\(e\left(\frac{29}{40}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{13}{40}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{39}{40}\right)\)\(e\left(\frac{5}{8}\right)\)\(1\)\(e\left(\frac{7}{40}\right)\)\(e\left(\frac{11}{40}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8800 }(4693,a) \;\) at \(\;a = \) e.g. 2