Properties

Label 8800.ow
Modulus $8800$
Conductor $1760$
Order $40$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8800, base_ring=CyclotomicField(40))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,5,30,28]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(293,8800))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8800\)
Conductor: \(1760\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(40\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 1760.eg
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{40})\)
Fixed field: 40.40.1314880012449506220994309247746612403564809108378301093397843089030698237952000000000000000000000000000000.1

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(13\) \(17\) \(19\) \(21\) \(23\) \(27\) \(29\)
\(\chi_{8800}(293,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{1}{8}\right)\) \(1\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{31}{40}\right)\)
\(\chi_{8800}(557,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{7}{8}\right)\) \(1\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{1}{40}\right)\)
\(\chi_{8800}(1493,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{5}{8}\right)\) \(1\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{19}{40}\right)\)
\(\chi_{8800}(1757,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{3}{8}\right)\) \(1\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{29}{40}\right)\)
\(\chi_{8800}(3093,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{5}{8}\right)\) \(1\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{3}{40}\right)\)
\(\chi_{8800}(3357,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{3}{8}\right)\) \(1\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{13}{40}\right)\)
\(\chi_{8800}(3493,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{1}{8}\right)\) \(1\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{7}{40}\right)\)
\(\chi_{8800}(3757,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{7}{8}\right)\) \(1\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{17}{40}\right)\)
\(\chi_{8800}(4693,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{5}{8}\right)\) \(1\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{11}{40}\right)\)
\(\chi_{8800}(4957,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{3}{8}\right)\) \(1\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{21}{40}\right)\)
\(\chi_{8800}(5893,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{1}{8}\right)\) \(1\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{39}{40}\right)\)
\(\chi_{8800}(6157,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{7}{8}\right)\) \(1\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{9}{40}\right)\)
\(\chi_{8800}(7493,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{1}{8}\right)\) \(1\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{23}{40}\right)\)
\(\chi_{8800}(7757,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{7}{8}\right)\) \(1\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{33}{40}\right)\)
\(\chi_{8800}(7893,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{5}{8}\right)\) \(1\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{27}{40}\right)\)
\(\chi_{8800}(8157,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{3}{8}\right)\) \(1\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{37}{40}\right)\)