Properties

Label 9200.1881
Modulus $9200$
Conductor $4600$
Order $110$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9200, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,55,44,60]))
 
pari: [g,chi] = znchar(Mod(1881,9200))
 

Basic properties

Modulus: \(9200\)
Conductor: \(4600\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(110\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4600}(4181,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 9200.er

\(\chi_{9200}(41,\cdot)\) \(\chi_{9200}(121,\cdot)\) \(\chi_{9200}(361,\cdot)\) \(\chi_{9200}(441,\cdot)\) \(\chi_{9200}(761,\cdot)\) \(\chi_{9200}(841,\cdot)\) \(\chi_{9200}(1481,\cdot)\) \(\chi_{9200}(1641,\cdot)\) \(\chi_{9200}(1881,\cdot)\) \(\chi_{9200}(1961,\cdot)\) \(\chi_{9200}(2281,\cdot)\) \(\chi_{9200}(2441,\cdot)\) \(\chi_{9200}(2681,\cdot)\) \(\chi_{9200}(2841,\cdot)\) \(\chi_{9200}(3321,\cdot)\) \(\chi_{9200}(3481,\cdot)\) \(\chi_{9200}(3721,\cdot)\) \(\chi_{9200}(4041,\cdot)\) \(\chi_{9200}(4121,\cdot)\) \(\chi_{9200}(4281,\cdot)\) \(\chi_{9200}(4441,\cdot)\) \(\chi_{9200}(4521,\cdot)\) \(\chi_{9200}(4681,\cdot)\) \(\chi_{9200}(5161,\cdot)\) \(\chi_{9200}(5321,\cdot)\) \(\chi_{9200}(5561,\cdot)\) \(\chi_{9200}(5641,\cdot)\) \(\chi_{9200}(5881,\cdot)\) \(\chi_{9200}(5961,\cdot)\) \(\chi_{9200}(6121,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((1151,6901,2577,1201)\) → \((1,-1,e\left(\frac{2}{5}\right),e\left(\frac{6}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(27\)\(29\)
\( \chi_{ 9200 }(1881, a) \) \(1\)\(1\)\(e\left(\frac{3}{110}\right)\)\(e\left(\frac{4}{11}\right)\)\(e\left(\frac{3}{55}\right)\)\(e\left(\frac{89}{110}\right)\)\(e\left(\frac{81}{110}\right)\)\(e\left(\frac{1}{55}\right)\)\(e\left(\frac{97}{110}\right)\)\(e\left(\frac{43}{110}\right)\)\(e\left(\frac{9}{110}\right)\)\(e\left(\frac{13}{110}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 9200 }(1881,a) \;\) at \(\;a = \) e.g. 2