Basic properties
Modulus: | \(9200\) | |
Conductor: | \(4600\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(110\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{4600}(1021,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 9200.er
\(\chi_{9200}(41,\cdot)\) \(\chi_{9200}(121,\cdot)\) \(\chi_{9200}(361,\cdot)\) \(\chi_{9200}(441,\cdot)\) \(\chi_{9200}(761,\cdot)\) \(\chi_{9200}(841,\cdot)\) \(\chi_{9200}(1481,\cdot)\) \(\chi_{9200}(1641,\cdot)\) \(\chi_{9200}(1881,\cdot)\) \(\chi_{9200}(1961,\cdot)\) \(\chi_{9200}(2281,\cdot)\) \(\chi_{9200}(2441,\cdot)\) \(\chi_{9200}(2681,\cdot)\) \(\chi_{9200}(2841,\cdot)\) \(\chi_{9200}(3321,\cdot)\) \(\chi_{9200}(3481,\cdot)\) \(\chi_{9200}(3721,\cdot)\) \(\chi_{9200}(4041,\cdot)\) \(\chi_{9200}(4121,\cdot)\) \(\chi_{9200}(4281,\cdot)\) \(\chi_{9200}(4441,\cdot)\) \(\chi_{9200}(4521,\cdot)\) \(\chi_{9200}(4681,\cdot)\) \(\chi_{9200}(5161,\cdot)\) \(\chi_{9200}(5321,\cdot)\) \(\chi_{9200}(5561,\cdot)\) \(\chi_{9200}(5641,\cdot)\) \(\chi_{9200}(5881,\cdot)\) \(\chi_{9200}(5961,\cdot)\) \(\chi_{9200}(6121,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{55})$ |
Fixed field: | Number field defined by a degree 110 polynomial (not computed) |
Values on generators
\((1151,6901,2577,1201)\) → \((1,-1,e\left(\frac{3}{5}\right),e\left(\frac{5}{11}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(27\) | \(29\) |
\( \chi_{ 9200 }(3321, a) \) | \(1\) | \(1\) | \(e\left(\frac{107}{110}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{52}{55}\right)\) | \(e\left(\frac{21}{110}\right)\) | \(e\left(\frac{29}{110}\right)\) | \(e\left(\frac{54}{55}\right)\) | \(e\left(\frac{13}{110}\right)\) | \(e\left(\frac{67}{110}\right)\) | \(e\left(\frac{101}{110}\right)\) | \(e\left(\frac{97}{110}\right)\) |