Properties

Label 9405.58
Modulus $9405$
Conductor $495$
Order $60$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9405, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([20,45,48,0]))
 
pari: [g,chi] = znchar(Mod(58,9405))
 

Basic properties

Modulus: \(9405\)
Conductor: \(495\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{495}(58,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 9405.lc

\(\chi_{9405}(58,\cdot)\) \(\chi_{9405}(742,\cdot)\) \(\chi_{9405}(1312,\cdot)\) \(\chi_{9405}(1483,\cdot)\) \(\chi_{9405}(2623,\cdot)\) \(\chi_{9405}(3193,\cdot)\) \(\chi_{9405}(3877,\cdot)\) \(\chi_{9405}(4162,\cdot)\) \(\chi_{9405}(5758,\cdot)\) \(\chi_{9405}(5872,\cdot)\) \(\chi_{9405}(6043,\cdot)\) \(\chi_{9405}(7297,\cdot)\) \(\chi_{9405}(7582,\cdot)\) \(\chi_{9405}(7753,\cdot)\) \(\chi_{9405}(9007,\cdot)\) \(\chi_{9405}(9178,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Values on generators

\((1046,1882,5986,496)\) → \((e\left(\frac{1}{3}\right),-i,e\left(\frac{4}{5}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(13\)\(14\)\(16\)\(17\)\(23\)\(26\)
\( \chi_{ 9405 }(58, a) \) \(-1\)\(1\)\(e\left(\frac{53}{60}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{41}{60}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{43}{60}\right)\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{3}{5}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 9405 }(58,a) \;\) at \(\;a = \) e.g. 2