sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9405, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([40,15,36,0]))
pari:[g,chi] = znchar(Mod(9007,9405))
χ9405(58,⋅)
χ9405(742,⋅)
χ9405(1312,⋅)
χ9405(1483,⋅)
χ9405(2623,⋅)
χ9405(3193,⋅)
χ9405(3877,⋅)
χ9405(4162,⋅)
χ9405(5758,⋅)
χ9405(5872,⋅)
χ9405(6043,⋅)
χ9405(7297,⋅)
χ9405(7582,⋅)
χ9405(7753,⋅)
χ9405(9007,⋅)
χ9405(9178,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1046,1882,5986,496) → (e(32),i,e(53),1)
a |
−1 | 1 | 2 | 4 | 7 | 8 | 13 | 14 | 16 | 17 | 23 | 26 |
χ9405(9007,a) |
−1 | 1 | e(6031) | e(301) | e(607) | e(2011) | e(6041) | e(3019) | e(151) | e(2013) | e(121) | e(51) |
sage:chi.jacobi_sum(n)