Properties

Label 9576.181
Modulus 95769576
Conductor 10641064
Order 1818
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9576, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,9,0,9,17]))
 
pari: [g,chi] = znchar(Mod(181,9576))
 

Basic properties

Modulus: 95769576
Conductor: 10641064
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ1064(181,)\chi_{1064}(181,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 9576.yq

χ9576(181,)\chi_{9576}(181,\cdot) χ9576(1693,)\chi_{9576}(1693,\cdot) χ9576(2701,)\chi_{9576}(2701,\cdot) χ9576(3205,)\chi_{9576}(3205,\cdot) χ9576(4213,)\chi_{9576}(4213,\cdot) χ9576(5221,)\chi_{9576}(5221,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

(7183,4789,5321,4105,1009)(7183,4789,5321,4105,1009)(1,1,1,1,e(1718))(1,-1,1,-1,e\left(\frac{17}{18}\right))

First values

aa 1-11155111113131717232325252929313137374141
χ9576(181,a) \chi_{ 9576 }(181, a) 1111e(19)e\left(\frac{1}{9}\right)e(56)e\left(\frac{5}{6}\right)e(1318)e\left(\frac{13}{18}\right)e(1718)e\left(\frac{17}{18}\right)e(89)e\left(\frac{8}{9}\right)e(29)e\left(\frac{2}{9}\right)e(59)e\left(\frac{5}{9}\right)e(23)e\left(\frac{2}{3}\right)11e(79)e\left(\frac{7}{9}\right)
sage: chi.jacobi_sum(n)
 
χ9576(181,a)   \chi_{ 9576 }(181,a) \; at   a=\;a = e.g. 2