Properties

Label 9576.4463
Modulus 95769576
Conductor 15961596
Order 1818
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9576, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([9,0,9,12,10]))
 
pari: [g,chi] = znchar(Mod(4463,9576))
 

Basic properties

Modulus: 95769576
Conductor: 15961596
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ1596(1271,)\chi_{1596}(1271,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 9576.tm

χ9576(1871,)\chi_{9576}(1871,\cdot) χ9576(1943,)\chi_{9576}(1943,\cdot) χ9576(3455,)\chi_{9576}(3455,\cdot) χ9576(4463,)\chi_{9576}(4463,\cdot) χ9576(6407,)\chi_{9576}(6407,\cdot) χ9576(8423,)\chi_{9576}(8423,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

(7183,4789,5321,4105,1009)(7183,4789,5321,4105,1009)(1,1,1,e(23),e(59))(-1,1,-1,e\left(\frac{2}{3}\right),e\left(\frac{5}{9}\right))

First values

aa 1-11155111113131717232325252929313137374141
χ9576(4463,a) \chi_{ 9576 }(4463, a) 1111e(1318)e\left(\frac{13}{18}\right)e(13)e\left(\frac{1}{3}\right)e(79)e\left(\frac{7}{9}\right)e(1318)e\left(\frac{13}{18}\right)e(49)e\left(\frac{4}{9}\right)e(49)e\left(\frac{4}{9}\right)e(1718)e\left(\frac{17}{18}\right)1-1e(13)e\left(\frac{1}{3}\right)e(1318)e\left(\frac{13}{18}\right)
sage: chi.jacobi_sum(n)
 
χ9576(4463,a)   \chi_{ 9576 }(4463,a) \; at   a=\;a = e.g. 2