Properties

Label 9576.tm
Modulus 95769576
Conductor 15961596
Order 1818
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9576, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([9,0,9,6,8]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(1871,9576))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 95769576
Conductor: 15961596
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 1596.dn
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Number field defined by a degree 18 polynomial

Characters in Galois orbit

Character 1-1 11 55 1111 1313 1717 2323 2525 2929 3131 3737 4141
χ9576(1871,)\chi_{9576}(1871,\cdot) 11 11 e(518)e\left(\frac{5}{18}\right) e(23)e\left(\frac{2}{3}\right) e(29)e\left(\frac{2}{9}\right) e(518)e\left(\frac{5}{18}\right) e(59)e\left(\frac{5}{9}\right) e(59)e\left(\frac{5}{9}\right) e(118)e\left(\frac{1}{18}\right) 1-1 e(23)e\left(\frac{2}{3}\right) e(518)e\left(\frac{5}{18}\right)
χ9576(1943,)\chi_{9576}(1943,\cdot) 11 11 e(118)e\left(\frac{1}{18}\right) e(13)e\left(\frac{1}{3}\right) e(49)e\left(\frac{4}{9}\right) e(118)e\left(\frac{1}{18}\right) e(19)e\left(\frac{1}{9}\right) e(19)e\left(\frac{1}{9}\right) e(1118)e\left(\frac{11}{18}\right) 1-1 e(13)e\left(\frac{1}{3}\right) e(118)e\left(\frac{1}{18}\right)
χ9576(3455,)\chi_{9576}(3455,\cdot) 11 11 e(718)e\left(\frac{7}{18}\right) e(13)e\left(\frac{1}{3}\right) e(19)e\left(\frac{1}{9}\right) e(718)e\left(\frac{7}{18}\right) e(79)e\left(\frac{7}{9}\right) e(79)e\left(\frac{7}{9}\right) e(518)e\left(\frac{5}{18}\right) 1-1 e(13)e\left(\frac{1}{3}\right) e(718)e\left(\frac{7}{18}\right)
χ9576(4463,)\chi_{9576}(4463,\cdot) 11 11 e(1318)e\left(\frac{13}{18}\right) e(13)e\left(\frac{1}{3}\right) e(79)e\left(\frac{7}{9}\right) e(1318)e\left(\frac{13}{18}\right) e(49)e\left(\frac{4}{9}\right) e(49)e\left(\frac{4}{9}\right) e(1718)e\left(\frac{17}{18}\right) 1-1 e(13)e\left(\frac{1}{3}\right) e(1318)e\left(\frac{13}{18}\right)
χ9576(6407,)\chi_{9576}(6407,\cdot) 11 11 e(1718)e\left(\frac{17}{18}\right) e(23)e\left(\frac{2}{3}\right) e(59)e\left(\frac{5}{9}\right) e(1718)e\left(\frac{17}{18}\right) e(89)e\left(\frac{8}{9}\right) e(89)e\left(\frac{8}{9}\right) e(718)e\left(\frac{7}{18}\right) 1-1 e(23)e\left(\frac{2}{3}\right) e(1718)e\left(\frac{17}{18}\right)
χ9576(8423,)\chi_{9576}(8423,\cdot) 11 11 e(1118)e\left(\frac{11}{18}\right) e(23)e\left(\frac{2}{3}\right) e(89)e\left(\frac{8}{9}\right) e(1118)e\left(\frac{11}{18}\right) e(29)e\left(\frac{2}{9}\right) e(29)e\left(\frac{2}{9}\right) e(1318)e\left(\frac{13}{18}\right) 1-1 e(23)e\left(\frac{2}{3}\right) e(1118)e\left(\frac{11}{18}\right)