Properties

Label 9576.7025
Modulus 95769576
Conductor 11971197
Order 1818
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9576, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,15,12,7]))
 
pari: [g,chi] = znchar(Mod(7025,9576))
 

Basic properties

Modulus: 95769576
Conductor: 11971197
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ1197(1040,)\chi_{1197}(1040,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 9576.zm

χ9576(2081,)\chi_{9576}(2081,\cdot) χ9576(4505,)\chi_{9576}(4505,\cdot) χ9576(5105,)\chi_{9576}(5105,\cdot) χ9576(5513,)\chi_{9576}(5513,\cdot) χ9576(7025,)\chi_{9576}(7025,\cdot) χ9576(7121,)\chi_{9576}(7121,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

(7183,4789,5321,4105,1009)(7183,4789,5321,4105,1009)(1,1,e(56),e(23),e(718))(1,1,e\left(\frac{5}{6}\right),e\left(\frac{2}{3}\right),e\left(\frac{7}{18}\right))

First values

aa 1-11155111113131717232325252929313137374141
χ9576(7025,a) \chi_{ 9576 }(7025, a) 1111e(1318)e\left(\frac{13}{18}\right)e(16)e\left(\frac{1}{6}\right)e(1118)e\left(\frac{11}{18}\right)e(118)e\left(\frac{1}{18}\right)e(518)e\left(\frac{5}{18}\right)e(49)e\left(\frac{4}{9}\right)e(49)e\left(\frac{4}{9}\right)e(16)e\left(\frac{1}{6}\right)e(56)e\left(\frac{5}{6}\right)e(29)e\left(\frac{2}{9}\right)
sage: chi.jacobi_sum(n)
 
χ9576(7025,a)   \chi_{ 9576 }(7025,a) \; at   a=\;a = e.g. 2