from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(967, base_ring=CyclotomicField(322))
M = H._module
chi = DirichletCharacter(H, M([125]))
pari: [g,chi] = znchar(Mod(10,967))
χ967(3,⋅)
χ967(10,⋅)
χ967(23,⋅)
χ967(24,⋅)
χ967(26,⋅)
χ967(27,⋅)
χ967(29,⋅)
χ967(33,⋅)
χ967(67,⋅)
χ967(76,⋅)
χ967(80,⋅)
χ967(90,⋅)
χ967(109,⋅)
χ967(110,⋅)
χ967(112,⋅)
χ967(125,⋅)
χ967(126,⋅)
χ967(154,⋅)
χ967(158,⋅)
χ967(167,⋅)
χ967(170,⋅)
χ967(178,⋅)
χ967(184,⋅)
χ967(186,⋅)
χ967(191,⋅)
χ967(192,⋅)
χ967(207,⋅)
χ967(208,⋅)
χ967(213,⋅)
χ967(214,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
5 → e(322125)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ967(10,a) |
−1 | 1 | e(16130) | e(3221) | e(16160) | e(322125) | e(32261) | e(3223) | e(16190) | e(1611) | e(322185) | e(161116) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)