Properties

Label 967.10
Modulus 967967
Conductor 967967
Order 322322
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(967, base_ring=CyclotomicField(322))
 
M = H._module
 
chi = DirichletCharacter(H, M([125]))
 
pari: [g,chi] = znchar(Mod(10,967))
 

Basic properties

Modulus: 967967
Conductor: 967967
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 322322
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 967.n

χ967(3,)\chi_{967}(3,\cdot) χ967(10,)\chi_{967}(10,\cdot) χ967(23,)\chi_{967}(23,\cdot) χ967(24,)\chi_{967}(24,\cdot) χ967(26,)\chi_{967}(26,\cdot) χ967(27,)\chi_{967}(27,\cdot) χ967(29,)\chi_{967}(29,\cdot) χ967(33,)\chi_{967}(33,\cdot) χ967(67,)\chi_{967}(67,\cdot) χ967(76,)\chi_{967}(76,\cdot) χ967(80,)\chi_{967}(80,\cdot) χ967(90,)\chi_{967}(90,\cdot) χ967(109,)\chi_{967}(109,\cdot) χ967(110,)\chi_{967}(110,\cdot) χ967(112,)\chi_{967}(112,\cdot) χ967(125,)\chi_{967}(125,\cdot) χ967(126,)\chi_{967}(126,\cdot) χ967(154,)\chi_{967}(154,\cdot) χ967(158,)\chi_{967}(158,\cdot) χ967(167,)\chi_{967}(167,\cdot) χ967(170,)\chi_{967}(170,\cdot) χ967(178,)\chi_{967}(178,\cdot) χ967(184,)\chi_{967}(184,\cdot) χ967(186,)\chi_{967}(186,\cdot) χ967(191,)\chi_{967}(191,\cdot) χ967(192,)\chi_{967}(192,\cdot) χ967(207,)\chi_{967}(207,\cdot) χ967(208,)\chi_{967}(208,\cdot) χ967(213,)\chi_{967}(213,\cdot) χ967(214,)\chi_{967}(214,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ161)\Q(\zeta_{161})
Fixed field: Number field defined by a degree 322 polynomial (not computed)

Values on generators

55e(125322)e\left(\frac{125}{322}\right)

First values

aa 1-111223344556677889910101111
χ967(10,a) \chi_{ 967 }(10, a) 1-111e(30161)e\left(\frac{30}{161}\right)e(1322)e\left(\frac{1}{322}\right)e(60161)e\left(\frac{60}{161}\right)e(125322)e\left(\frac{125}{322}\right)e(61322)e\left(\frac{61}{322}\right)e(3322)e\left(\frac{3}{322}\right)e(90161)e\left(\frac{90}{161}\right)e(1161)e\left(\frac{1}{161}\right)e(185322)e\left(\frac{185}{322}\right)e(116161)e\left(\frac{116}{161}\right)
sage: chi.jacobi_sum(n)
 
χ967(10,a)   \chi_{ 967 }(10,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ967(10,))   \tau_{ a }( \chi_{ 967 }(10,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ967(10,),χ967(n,))   J(\chi_{ 967 }(10,·),\chi_{ 967 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ967(10,))  K(a,b,\chi_{ 967 }(10,·)) \; at   a,b=\; a,b = e.g. 1,2