Properties

Label 967.23
Modulus 967967
Conductor 967967
Order 322322
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(967, base_ring=CyclotomicField(322))
 
M = H._module
 
chi = DirichletCharacter(H, M([257]))
 
pari: [g,chi] = znchar(Mod(23,967))
 

Basic properties

Modulus: 967967
Conductor: 967967
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 322322
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 967.n

χ967(3,)\chi_{967}(3,\cdot) χ967(10,)\chi_{967}(10,\cdot) χ967(23,)\chi_{967}(23,\cdot) χ967(24,)\chi_{967}(24,\cdot) χ967(26,)\chi_{967}(26,\cdot) χ967(27,)\chi_{967}(27,\cdot) χ967(29,)\chi_{967}(29,\cdot) χ967(33,)\chi_{967}(33,\cdot) χ967(67,)\chi_{967}(67,\cdot) χ967(76,)\chi_{967}(76,\cdot) χ967(80,)\chi_{967}(80,\cdot) χ967(90,)\chi_{967}(90,\cdot) χ967(109,)\chi_{967}(109,\cdot) χ967(110,)\chi_{967}(110,\cdot) χ967(112,)\chi_{967}(112,\cdot) χ967(125,)\chi_{967}(125,\cdot) χ967(126,)\chi_{967}(126,\cdot) χ967(154,)\chi_{967}(154,\cdot) χ967(158,)\chi_{967}(158,\cdot) χ967(167,)\chi_{967}(167,\cdot) χ967(170,)\chi_{967}(170,\cdot) χ967(178,)\chi_{967}(178,\cdot) χ967(184,)\chi_{967}(184,\cdot) χ967(186,)\chi_{967}(186,\cdot) χ967(191,)\chi_{967}(191,\cdot) χ967(192,)\chi_{967}(192,\cdot) χ967(207,)\chi_{967}(207,\cdot) χ967(208,)\chi_{967}(208,\cdot) χ967(213,)\chi_{967}(213,\cdot) χ967(214,)\chi_{967}(214,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ161)\Q(\zeta_{161})
Fixed field: Number field defined by a degree 322 polynomial (not computed)

Values on generators

55e(257322)e\left(\frac{257}{322}\right)

First values

aa 1-111223344556677889910101111
χ967(23,a) \chi_{ 967 }(23, a) 1-111e(81161)e\left(\frac{81}{161}\right)e(51322)e\left(\frac{51}{322}\right)e(1161)e\left(\frac{1}{161}\right)e(257322)e\left(\frac{257}{322}\right)e(213322)e\left(\frac{213}{322}\right)e(153322)e\left(\frac{153}{322}\right)e(82161)e\left(\frac{82}{161}\right)e(51161)e\left(\frac{51}{161}\right)e(97322)e\left(\frac{97}{322}\right)e(120161)e\left(\frac{120}{161}\right)
sage: chi.jacobi_sum(n)
 
χ967(23,a)   \chi_{ 967 }(23,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ967(23,))   \tau_{ a }( \chi_{ 967 }(23,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ967(23,),χ967(n,))   J(\chi_{ 967 }(23,·),\chi_{ 967 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ967(23,))  K(a,b,\chi_{ 967 }(23,·)) \; at   a,b=\; a,b = e.g. 1,2