Properties

Label 967.393
Modulus 967967
Conductor 967967
Order 4646
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(967, base_ring=CyclotomicField(46))
 
M = H._module
 
chi = DirichletCharacter(H, M([3]))
 
pari: [g,chi] = znchar(Mod(393,967))
 

Basic properties

Modulus: 967967
Conductor: 967967
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 4646
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 967.j

χ967(14,)\chi_{967}(14,\cdot) χ967(41,)\chi_{967}(41,\cdot) χ967(51,)\chi_{967}(51,\cdot) χ967(74,)\chi_{967}(74,\cdot) χ967(94,)\chi_{967}(94,\cdot) χ967(172,)\chi_{967}(172,\cdot) χ967(253,)\chi_{967}(253,\cdot) χ967(264,)\chi_{967}(264,\cdot) χ967(271,)\chi_{967}(271,\cdot) χ967(300,)\chi_{967}(300,\cdot) χ967(326,)\chi_{967}(326,\cdot) χ967(393,)\chi_{967}(393,\cdot) χ967(493,)\chi_{967}(493,\cdot) χ967(618,)\chi_{967}(618,\cdot) χ967(635,)\chi_{967}(635,\cdot) χ967(684,)\chi_{967}(684,\cdot) χ967(771,)\chi_{967}(771,\cdot) χ967(780,)\chi_{967}(780,\cdot) χ967(810,)\chi_{967}(810,\cdot) χ967(834,)\chi_{967}(834,\cdot) χ967(895,)\chi_{967}(895,\cdot) χ967(898,)\chi_{967}(898,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ23)\Q(\zeta_{23})
Fixed field: Number field defined by a degree 46 polynomial

Values on generators

55e(346)e\left(\frac{3}{46}\right)

First values

aa 1-111223344556677889910101111
χ967(393,a) \chi_{ 967 }(393, a) 1-111e(923)e\left(\frac{9}{23}\right)e(2146)e\left(\frac{21}{46}\right)e(1823)e\left(\frac{18}{23}\right)e(346)e\left(\frac{3}{46}\right)e(3946)e\left(\frac{39}{46}\right)e(1746)e\left(\frac{17}{46}\right)e(423)e\left(\frac{4}{23}\right)e(2123)e\left(\frac{21}{23}\right)e(2146)e\left(\frac{21}{46}\right)e(2123)e\left(\frac{21}{23}\right)
sage: chi.jacobi_sum(n)
 
χ967(393,a)   \chi_{ 967 }(393,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ967(393,))   \tau_{ a }( \chi_{ 967 }(393,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ967(393,),χ967(n,))   J(\chi_{ 967 }(393,·),\chi_{ 967 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ967(393,))  K(a,b,\chi_{ 967 }(393,·)) \; at   a,b=\; a,b = e.g. 1,2