from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(967, base_ring=CyclotomicField(46))
M = H._module
chi = DirichletCharacter(H, M([21]))
chi.galois_orbit()
[g,chi] = znchar(Mod(14,967))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(967\) | |
Conductor: | \(967\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(46\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{23})\) |
Fixed field: | Number field defined by a degree 46 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{967}(14,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{17}{23}\right)\) | \(e\left(\frac{9}{46}\right)\) | \(e\left(\frac{11}{23}\right)\) | \(e\left(\frac{21}{46}\right)\) | \(e\left(\frac{43}{46}\right)\) | \(e\left(\frac{27}{46}\right)\) | \(e\left(\frac{5}{23}\right)\) | \(e\left(\frac{9}{23}\right)\) | \(e\left(\frac{9}{46}\right)\) | \(e\left(\frac{9}{23}\right)\) |
\(\chi_{967}(41,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{15}{23}\right)\) | \(e\left(\frac{35}{46}\right)\) | \(e\left(\frac{7}{23}\right)\) | \(e\left(\frac{5}{46}\right)\) | \(e\left(\frac{19}{46}\right)\) | \(e\left(\frac{13}{46}\right)\) | \(e\left(\frac{22}{23}\right)\) | \(e\left(\frac{12}{23}\right)\) | \(e\left(\frac{35}{46}\right)\) | \(e\left(\frac{12}{23}\right)\) |
\(\chi_{967}(51,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{13}{23}\right)\) | \(e\left(\frac{15}{46}\right)\) | \(e\left(\frac{3}{23}\right)\) | \(e\left(\frac{35}{46}\right)\) | \(e\left(\frac{41}{46}\right)\) | \(e\left(\frac{45}{46}\right)\) | \(e\left(\frac{16}{23}\right)\) | \(e\left(\frac{15}{23}\right)\) | \(e\left(\frac{15}{46}\right)\) | \(e\left(\frac{15}{23}\right)\) |
\(\chi_{967}(74,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{12}{23}\right)\) | \(e\left(\frac{5}{46}\right)\) | \(e\left(\frac{1}{23}\right)\) | \(e\left(\frac{27}{46}\right)\) | \(e\left(\frac{29}{46}\right)\) | \(e\left(\frac{15}{46}\right)\) | \(e\left(\frac{13}{23}\right)\) | \(e\left(\frac{5}{23}\right)\) | \(e\left(\frac{5}{46}\right)\) | \(e\left(\frac{5}{23}\right)\) |
\(\chi_{967}(94,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{2}{23}\right)\) | \(e\left(\frac{43}{46}\right)\) | \(e\left(\frac{4}{23}\right)\) | \(e\left(\frac{39}{46}\right)\) | \(e\left(\frac{1}{46}\right)\) | \(e\left(\frac{37}{46}\right)\) | \(e\left(\frac{6}{23}\right)\) | \(e\left(\frac{20}{23}\right)\) | \(e\left(\frac{43}{46}\right)\) | \(e\left(\frac{20}{23}\right)\) |
\(\chi_{967}(172,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{16}{23}\right)\) | \(e\left(\frac{45}{46}\right)\) | \(e\left(\frac{9}{23}\right)\) | \(e\left(\frac{13}{46}\right)\) | \(e\left(\frac{31}{46}\right)\) | \(e\left(\frac{43}{46}\right)\) | \(e\left(\frac{2}{23}\right)\) | \(e\left(\frac{22}{23}\right)\) | \(e\left(\frac{45}{46}\right)\) | \(e\left(\frac{22}{23}\right)\) |
\(\chi_{967}(253,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{7}{23}\right)\) | \(e\left(\frac{1}{46}\right)\) | \(e\left(\frac{14}{23}\right)\) | \(e\left(\frac{33}{46}\right)\) | \(e\left(\frac{15}{46}\right)\) | \(e\left(\frac{3}{46}\right)\) | \(e\left(\frac{21}{23}\right)\) | \(e\left(\frac{1}{23}\right)\) | \(e\left(\frac{1}{46}\right)\) | \(e\left(\frac{1}{23}\right)\) |
\(\chi_{967}(264,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{22}{23}\right)\) | \(e\left(\frac{13}{46}\right)\) | \(e\left(\frac{21}{23}\right)\) | \(e\left(\frac{15}{46}\right)\) | \(e\left(\frac{11}{46}\right)\) | \(e\left(\frac{39}{46}\right)\) | \(e\left(\frac{20}{23}\right)\) | \(e\left(\frac{13}{23}\right)\) | \(e\left(\frac{13}{46}\right)\) | \(e\left(\frac{13}{23}\right)\) |
\(\chi_{967}(271,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{18}{23}\right)\) | \(e\left(\frac{19}{46}\right)\) | \(e\left(\frac{13}{23}\right)\) | \(e\left(\frac{29}{46}\right)\) | \(e\left(\frac{9}{46}\right)\) | \(e\left(\frac{11}{46}\right)\) | \(e\left(\frac{8}{23}\right)\) | \(e\left(\frac{19}{23}\right)\) | \(e\left(\frac{19}{46}\right)\) | \(e\left(\frac{19}{23}\right)\) |
\(\chi_{967}(300,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{3}{23}\right)\) | \(e\left(\frac{7}{46}\right)\) | \(e\left(\frac{6}{23}\right)\) | \(e\left(\frac{1}{46}\right)\) | \(e\left(\frac{13}{46}\right)\) | \(e\left(\frac{21}{46}\right)\) | \(e\left(\frac{9}{23}\right)\) | \(e\left(\frac{7}{23}\right)\) | \(e\left(\frac{7}{46}\right)\) | \(e\left(\frac{7}{23}\right)\) |
\(\chi_{967}(326,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{23}\right)\) | \(e\left(\frac{33}{46}\right)\) | \(e\left(\frac{2}{23}\right)\) | \(e\left(\frac{31}{46}\right)\) | \(e\left(\frac{35}{46}\right)\) | \(e\left(\frac{7}{46}\right)\) | \(e\left(\frac{3}{23}\right)\) | \(e\left(\frac{10}{23}\right)\) | \(e\left(\frac{33}{46}\right)\) | \(e\left(\frac{10}{23}\right)\) |
\(\chi_{967}(393,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{9}{23}\right)\) | \(e\left(\frac{21}{46}\right)\) | \(e\left(\frac{18}{23}\right)\) | \(e\left(\frac{3}{46}\right)\) | \(e\left(\frac{39}{46}\right)\) | \(e\left(\frac{17}{46}\right)\) | \(e\left(\frac{4}{23}\right)\) | \(e\left(\frac{21}{23}\right)\) | \(e\left(\frac{21}{46}\right)\) | \(e\left(\frac{21}{23}\right)\) |
\(\chi_{967}(493,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{10}{23}\right)\) | \(e\left(\frac{31}{46}\right)\) | \(e\left(\frac{20}{23}\right)\) | \(e\left(\frac{11}{46}\right)\) | \(e\left(\frac{5}{46}\right)\) | \(e\left(\frac{1}{46}\right)\) | \(e\left(\frac{7}{23}\right)\) | \(e\left(\frac{8}{23}\right)\) | \(e\left(\frac{31}{46}\right)\) | \(e\left(\frac{8}{23}\right)\) |
\(\chi_{967}(618,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{19}{23}\right)\) | \(e\left(\frac{29}{46}\right)\) | \(e\left(\frac{15}{23}\right)\) | \(e\left(\frac{37}{46}\right)\) | \(e\left(\frac{21}{46}\right)\) | \(e\left(\frac{41}{46}\right)\) | \(e\left(\frac{11}{23}\right)\) | \(e\left(\frac{6}{23}\right)\) | \(e\left(\frac{29}{46}\right)\) | \(e\left(\frac{6}{23}\right)\) |
\(\chi_{967}(635,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{20}{23}\right)\) | \(e\left(\frac{39}{46}\right)\) | \(e\left(\frac{17}{23}\right)\) | \(e\left(\frac{45}{46}\right)\) | \(e\left(\frac{33}{46}\right)\) | \(e\left(\frac{25}{46}\right)\) | \(e\left(\frac{14}{23}\right)\) | \(e\left(\frac{16}{23}\right)\) | \(e\left(\frac{39}{46}\right)\) | \(e\left(\frac{16}{23}\right)\) |
\(\chi_{967}(684,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{8}{23}\right)\) | \(e\left(\frac{11}{46}\right)\) | \(e\left(\frac{16}{23}\right)\) | \(e\left(\frac{41}{46}\right)\) | \(e\left(\frac{27}{46}\right)\) | \(e\left(\frac{33}{46}\right)\) | \(e\left(\frac{1}{23}\right)\) | \(e\left(\frac{11}{23}\right)\) | \(e\left(\frac{11}{46}\right)\) | \(e\left(\frac{11}{23}\right)\) |
\(\chi_{967}(771,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{11}{23}\right)\) | \(e\left(\frac{41}{46}\right)\) | \(e\left(\frac{22}{23}\right)\) | \(e\left(\frac{19}{46}\right)\) | \(e\left(\frac{17}{46}\right)\) | \(e\left(\frac{31}{46}\right)\) | \(e\left(\frac{10}{23}\right)\) | \(e\left(\frac{18}{23}\right)\) | \(e\left(\frac{41}{46}\right)\) | \(e\left(\frac{18}{23}\right)\) |
\(\chi_{967}(780,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{14}{23}\right)\) | \(e\left(\frac{25}{46}\right)\) | \(e\left(\frac{5}{23}\right)\) | \(e\left(\frac{43}{46}\right)\) | \(e\left(\frac{7}{46}\right)\) | \(e\left(\frac{29}{46}\right)\) | \(e\left(\frac{19}{23}\right)\) | \(e\left(\frac{2}{23}\right)\) | \(e\left(\frac{25}{46}\right)\) | \(e\left(\frac{2}{23}\right)\) |
\(\chi_{967}(810,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{5}{23}\right)\) | \(e\left(\frac{27}{46}\right)\) | \(e\left(\frac{10}{23}\right)\) | \(e\left(\frac{17}{46}\right)\) | \(e\left(\frac{37}{46}\right)\) | \(e\left(\frac{35}{46}\right)\) | \(e\left(\frac{15}{23}\right)\) | \(e\left(\frac{4}{23}\right)\) | \(e\left(\frac{27}{46}\right)\) | \(e\left(\frac{4}{23}\right)\) |
\(\chi_{967}(834,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{4}{23}\right)\) | \(e\left(\frac{17}{46}\right)\) | \(e\left(\frac{8}{23}\right)\) | \(e\left(\frac{9}{46}\right)\) | \(e\left(\frac{25}{46}\right)\) | \(e\left(\frac{5}{46}\right)\) | \(e\left(\frac{12}{23}\right)\) | \(e\left(\frac{17}{23}\right)\) | \(e\left(\frac{17}{46}\right)\) | \(e\left(\frac{17}{23}\right)\) |
\(\chi_{967}(895,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{21}{23}\right)\) | \(e\left(\frac{3}{46}\right)\) | \(e\left(\frac{19}{23}\right)\) | \(e\left(\frac{7}{46}\right)\) | \(e\left(\frac{45}{46}\right)\) | \(e\left(\frac{9}{46}\right)\) | \(e\left(\frac{17}{23}\right)\) | \(e\left(\frac{3}{23}\right)\) | \(e\left(\frac{3}{46}\right)\) | \(e\left(\frac{3}{23}\right)\) |
\(\chi_{967}(898,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{6}{23}\right)\) | \(e\left(\frac{37}{46}\right)\) | \(e\left(\frac{12}{23}\right)\) | \(e\left(\frac{25}{46}\right)\) | \(e\left(\frac{3}{46}\right)\) | \(e\left(\frac{19}{46}\right)\) | \(e\left(\frac{18}{23}\right)\) | \(e\left(\frac{14}{23}\right)\) | \(e\left(\frac{37}{46}\right)\) | \(e\left(\frac{14}{23}\right)\) |