Properties

Label 98.43
Modulus 9898
Conductor 4949
Order 77
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(98, base_ring=CyclotomicField(14))
 
M = H._module
 
chi = DirichletCharacter(H, M([2]))
 
pari: [g,chi] = znchar(Mod(43,98))
 

Basic properties

Modulus: 9898
Conductor: 4949
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 77
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ49(43,)\chi_{49}(43,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 98.e

χ98(15,)\chi_{98}(15,\cdot) χ98(29,)\chi_{98}(29,\cdot) χ98(43,)\chi_{98}(43,\cdot) χ98(57,)\chi_{98}(57,\cdot) χ98(71,)\chi_{98}(71,\cdot) χ98(85,)\chi_{98}(85,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ7)\Q(\zeta_{7})
Fixed field: 7.7.13841287201.1

Values on generators

33e(17)e\left(\frac{1}{7}\right)

First values

aa 1-1113355991111131315151717191923232525
χ98(43,a) \chi_{ 98 }(43, a) 1111e(17)e\left(\frac{1}{7}\right)e(17)e\left(\frac{1}{7}\right)e(27)e\left(\frac{2}{7}\right)e(57)e\left(\frac{5}{7}\right)e(57)e\left(\frac{5}{7}\right)e(27)e\left(\frac{2}{7}\right)e(47)e\left(\frac{4}{7}\right)11e(37)e\left(\frac{3}{7}\right)e(27)e\left(\frac{2}{7}\right)
sage: chi.jacobi_sum(n)
 
χ98(43,a)   \chi_{ 98 }(43,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ98(43,))   \tau_{ a }( \chi_{ 98 }(43,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ98(43,),χ98(n,))   J(\chi_{ 98 }(43,·),\chi_{ 98 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ98(43,))  K(a,b,\chi_{ 98 }(43,·)) \; at   a,b=\; a,b = e.g. 1,2