Properties

Label 98.e
Modulus 9898
Conductor 4949
Order 77
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(98, base_ring=CyclotomicField(14))
 
M = H._module
 
chi = DirichletCharacter(H, M([10]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(15,98))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 9898
Conductor: 4949
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 77
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 49.e
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ7)\Q(\zeta_{7})
Fixed field: 7.7.13841287201.1

Characters in Galois orbit

Character 1-1 11 33 55 99 1111 1313 1515 1717 1919 2323 2525
χ98(15,)\chi_{98}(15,\cdot) 11 11 e(57)e\left(\frac{5}{7}\right) e(57)e\left(\frac{5}{7}\right) e(37)e\left(\frac{3}{7}\right) e(47)e\left(\frac{4}{7}\right) e(47)e\left(\frac{4}{7}\right) e(37)e\left(\frac{3}{7}\right) e(67)e\left(\frac{6}{7}\right) 11 e(17)e\left(\frac{1}{7}\right) e(37)e\left(\frac{3}{7}\right)
χ98(29,)\chi_{98}(29,\cdot) 11 11 e(37)e\left(\frac{3}{7}\right) e(37)e\left(\frac{3}{7}\right) e(67)e\left(\frac{6}{7}\right) e(17)e\left(\frac{1}{7}\right) e(17)e\left(\frac{1}{7}\right) e(67)e\left(\frac{6}{7}\right) e(57)e\left(\frac{5}{7}\right) 11 e(27)e\left(\frac{2}{7}\right) e(67)e\left(\frac{6}{7}\right)
χ98(43,)\chi_{98}(43,\cdot) 11 11 e(17)e\left(\frac{1}{7}\right) e(17)e\left(\frac{1}{7}\right) e(27)e\left(\frac{2}{7}\right) e(57)e\left(\frac{5}{7}\right) e(57)e\left(\frac{5}{7}\right) e(27)e\left(\frac{2}{7}\right) e(47)e\left(\frac{4}{7}\right) 11 e(37)e\left(\frac{3}{7}\right) e(27)e\left(\frac{2}{7}\right)
χ98(57,)\chi_{98}(57,\cdot) 11 11 e(67)e\left(\frac{6}{7}\right) e(67)e\left(\frac{6}{7}\right) e(57)e\left(\frac{5}{7}\right) e(27)e\left(\frac{2}{7}\right) e(27)e\left(\frac{2}{7}\right) e(57)e\left(\frac{5}{7}\right) e(37)e\left(\frac{3}{7}\right) 11 e(47)e\left(\frac{4}{7}\right) e(57)e\left(\frac{5}{7}\right)
χ98(71,)\chi_{98}(71,\cdot) 11 11 e(47)e\left(\frac{4}{7}\right) e(47)e\left(\frac{4}{7}\right) e(17)e\left(\frac{1}{7}\right) e(67)e\left(\frac{6}{7}\right) e(67)e\left(\frac{6}{7}\right) e(17)e\left(\frac{1}{7}\right) e(27)e\left(\frac{2}{7}\right) 11 e(57)e\left(\frac{5}{7}\right) e(17)e\left(\frac{1}{7}\right)
χ98(85,)\chi_{98}(85,\cdot) 11 11 e(27)e\left(\frac{2}{7}\right) e(27)e\left(\frac{2}{7}\right) e(47)e\left(\frac{4}{7}\right) e(37)e\left(\frac{3}{7}\right) e(37)e\left(\frac{3}{7}\right) e(47)e\left(\frac{4}{7}\right) e(17)e\left(\frac{1}{7}\right) 11 e(67)e\left(\frac{6}{7}\right) e(47)e\left(\frac{4}{7}\right)