Properties

Label 1216b2
Conductor 12161216
Discriminant 920599396352-920599396352
j-invariant 941963753511808 \frac{94196375}{3511808}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3x2+607x+45601y^2=x^3-x^2+607x+45601 Copy content Toggle raw display (homogenize, simplify)
y2z=x3x2z+607xz2+45601z3y^2z=x^3-x^2z+607xz^2+45601z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+49140x+33390576y^2=x^3+49140x+33390576 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 0, 607, 45601])
 
gp: E = ellinit([0, -1, 0, 607, 45601])
 
magma: E := EllipticCurve([0, -1, 0, 607, 45601]);
 
oscar: E = elliptic_curve([0, -1, 0, 607, 45601])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(57,512)(57, 512)0.834776094913618029891305344620.83477609491361802989130534462\infty

Integral points

(13,±188)(-13,\pm 188), (57,±512)(57,\pm 512) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  1216 1216  = 26192^{6} \cdot 19
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  920599396352-920599396352 = 1227193-1 \cdot 2^{27} \cdot 19^{3}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  941963753511808 \frac{94196375}{3511808}  = 2953731331932^{-9} \cdot 5^{3} \cdot 7^{3} \cdot 13^{3} \cdot 19^{-3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.975584237463106699380187483800.97558423746310669938018748380
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.064136533376811264745660698387-0.064136533376811264745660698387
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.018745916113811.01874591611381
Szpiro ratio: σm\sigma_{m} ≈ 4.9254934931161284.925493493116128

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.834776094913618029891305344620.83477609491361802989130534462
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.668439435261021647865034377660.66843943526102164786503437766
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 221 2^{2}\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 2.23198904581383936639619270642.2319890458138393663961927064
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.231989046L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.6684390.8347764122.231989046\displaystyle 2.231989046 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.668439 \cdot 0.834776 \cdot 4}{1^2} \approx 2.231989046

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   1216.2.a.e

qq3q72q9+6q115q13+3q17q19+O(q20) q - q^{3} - q^{7} - 2 q^{9} + 6 q^{11} - 5 q^{13} + 3 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 1152
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I17I_{17}^{*} additive 1 6 27 9
1919 11 I3I_{3} nonsplit multiplicative 1 1 3 3

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3Cs 9.36.0.2

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[2051, 4050, 2025, 2645], [19, 54, 792, 3547], [2377, 54, 2211, 2755], [2509, 3512, 912, 2813], [1, 27, 27, 730], [1, 54, 0, 1], [3079, 54, 0, 1], [4051, 54, 4050, 55], [1, 0, 54, 1], [43, 30, 3918, 1111]]
 
GL(2,Integers(4104)).subgroup(gens)
 
Gens := [[2051, 4050, 2025, 2645], [19, 54, 792, 3547], [2377, 54, 2211, 2755], [2509, 3512, 912, 2813], [1, 27, 27, 730], [1, 54, 0, 1], [3079, 54, 0, 1], [4051, 54, 4050, 55], [1, 0, 54, 1], [43, 30, 3918, 1111]];
 
sub<GL(2,Integers(4104))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 4104=233319 4104 = 2^{3} \cdot 3^{3} \cdot 19 , index 12961296, genus 4343, and generators

(2051405020252645),(19547923547),(23775422112755),(250935129122813),(12727730),(15401),(30795401),(405154405055),(10541),(433039181111)\left(\begin{array}{rr} 2051 & 4050 \\ 2025 & 2645 \end{array}\right),\left(\begin{array}{rr} 19 & 54 \\ 792 & 3547 \end{array}\right),\left(\begin{array}{rr} 2377 & 54 \\ 2211 & 2755 \end{array}\right),\left(\begin{array}{rr} 2509 & 3512 \\ 912 & 2813 \end{array}\right),\left(\begin{array}{rr} 1 & 27 \\ 27 & 730 \end{array}\right),\left(\begin{array}{rr} 1 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3079 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4051 & 54 \\ 4050 & 55 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 54 & 1 \end{array}\right),\left(\begin{array}{rr} 43 & 30 \\ 3918 & 1111 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[4104])K:=\Q(E[4104]) is a degree-4595429376045954293760 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/4104Z)\GL_2(\Z/4104\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 44 19 19
33 good 22 64=26 64 = 2^{6}
1919 nonsplit multiplicative 2020 64=26 64 = 2^{6}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 1216b consists of 3 curves linked by isogenies of degrees dividing 9.

Twists

The minimal quadratic twist of this elliptic curve is 38a1, its twist by 88.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(2)\Q(\sqrt{2}) Z/3Z\Z/3\Z 2.2.8.1-722.1-b3
22 Q(6)\Q(\sqrt{-6}) Z/3Z\Z/3\Z not in database
33 3.1.152.1 Z/2Z\Z/2\Z not in database
44 Q(2,3)\Q(\sqrt{2}, \sqrt{-3}) Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
66 6.0.3511808.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.2.184832.1 Z/6Z\Z/6\Z not in database
66 6.0.4990464.1 Z/6Z\Z/6\Z not in database
1212 12.2.119973433931988992.9 Z/4Z\Z/4\Z not in database
1212 12.0.24904730935296.1 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database
1212 12.0.12332795428864.1 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1212 12.0.8990607867641856.2 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1818 18.6.216561186743676164093509632.1 Z/9Z\Z/9\Z not in database
1818 18.0.2265306503399694103070297070602551296.3 Z/9Z\Z/9\Z not in database

We only show fields where the torsion growth is primitive.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add ord ss ord ord ord ord nonsplit ord ord ord ord ss ord ss
λ\lambda-invariant(s) - 1 1,1 1 1 1 1 3 1 1 1 1 1,1 1 1,1
μ\mu-invariant(s) - 1 0,0 0 0 0 0 0 0 0 0 0 0,0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.