Properties

Label 122018bh1
Conductor 122018122018
Discriminant 3.779×1017-3.779\times 10^{17}
j-invariant 21466891664 -\frac{2146689}{1664}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3x2163962x39044807y^2+xy+y=x^3-x^2-163962x-39044807 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3x2z163962xz239044807z3y^2z+xyz+yz^2=x^3-x^2z-163962xz^2-39044807z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x32623387x2501491018y^2=x^3-2623387x-2501491018 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 1, -163962, -39044807])
 
gp: E = ellinit([1, -1, 1, -163962, -39044807])
 
magma: E := EllipticCurve([1, -1, 1, -163962, -39044807]);
 
oscar: E = elliptic_curve([1, -1, 1, -163962, -39044807])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(27367/9,4442195/27)(27367/9, 4442195/27)6.75872794077155896590605318366.7587279407715589659060531836\infty

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  122018 122018  = 21321922 \cdot 13^{2} \cdot 19^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  377863585754685056-377863585754685056 = 127137196-1 \cdot 2^{7} \cdot 13^{7} \cdot 19^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  21466891664 -\frac{2146689}{1664}  = 12733131433-1 \cdot 2^{-7} \cdot 3^{3} \cdot 13^{-1} \cdot 43^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.07153361988971651067458813502.0715336198897165106745881350
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.68316054842427208735666930172-0.68316054842427208735666930172
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.967836043388420.96783604338842
Szpiro ratio: σm\sigma_{m} ≈ 4.1398565745944844.139856574594484

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 6.75872794077155896590605318366.7587279407715589659060531836
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.114789410368553550859024512110.11478941036855355085902451211
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 28 28  = 722 7\cdot2\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 21.72325106455379064946474838721.723251064553790649464748387
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

21.723251065L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.1147896.758728281221.723251065\displaystyle 21.723251065 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.114789 \cdot 6.758728 \cdot 28}{1^2} \approx 21.723251065

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 122018.2.a.bi

q+q2+3q3+q4+q5+3q6q7+q8+6q9+q10+2q11+3q12q14+3q15+q163q17+6q18+O(q20) q + q^{2} + 3 q^{3} + q^{4} + q^{5} + 3 q^{6} - q^{7} + q^{8} + 6 q^{9} + q^{10} + 2 q^{11} + 3 q^{12} - q^{14} + 3 q^{15} + q^{16} - 3 q^{17} + 6 q^{18} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 2201472
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 77 I7I_{7} split multiplicative -1 1 7 7
1313 22 I1I_{1}^{*} additive 1 2 7 1
1919 22 I0I_0^{*} additive -1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
77 7B.6.1 7.24.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[13819, 14, 13818, 15], [8, 5, 91, 57], [3459, 9842, 0, 5435], [1, 14, 0, 1], [2183, 0, 0, 13831], [1, 0, 14, 1], [7447, 10906, 9177, 7181], [10375, 2926, 4921, 6651], [6917, 2926, 8379, 6651]]
 
GL(2,Integers(13832)).subgroup(gens)
 
Gens := [[13819, 14, 13818, 15], [8, 5, 91, 57], [3459, 9842, 0, 5435], [1, 14, 0, 1], [2183, 0, 0, 13831], [1, 0, 14, 1], [7447, 10906, 9177, 7181], [10375, 2926, 4921, 6651], [6917, 2926, 8379, 6651]];
 
sub<GL(2,Integers(13832))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 13832=2371319 13832 = 2^{3} \cdot 7 \cdot 13 \cdot 19 , index 9696, genus 22, and generators

(13819141381815),(859157),(3459984205435),(11401),(21830013831),(10141),(74471090691777181),(10375292649216651),(6917292683796651)\left(\begin{array}{rr} 13819 & 14 \\ 13818 & 15 \end{array}\right),\left(\begin{array}{rr} 8 & 5 \\ 91 & 57 \end{array}\right),\left(\begin{array}{rr} 3459 & 9842 \\ 0 & 5435 \end{array}\right),\left(\begin{array}{rr} 1 & 14 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2183 & 0 \\ 0 & 13831 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 14 & 1 \end{array}\right),\left(\begin{array}{rr} 7447 & 10906 \\ 9177 & 7181 \end{array}\right),\left(\begin{array}{rr} 10375 & 2926 \\ 4921 & 6651 \end{array}\right),\left(\begin{array}{rr} 6917 & 2926 \\ 8379 & 6651 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[13832])K:=\Q(E[13832]) is a degree-104081369333760104081369333760 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/13832Z)\GL_2(\Z/13832\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 61009=132192 61009 = 13^{2} \cdot 19^{2}
77 good 22 61009=132192 61009 = 13^{2} \cdot 19^{2}
1313 additive 9898 722=2192 722 = 2 \cdot 19^{2}
1919 additive 182182 338=2132 338 = 2 \cdot 13^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 7.
Its isogeny class 122018bh consists of 2 curves linked by isogenies of degree 7.

Twists

The minimal quadratic twist of this elliptic curve is 26b1, its twist by 247-247.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(247)\Q(\sqrt{-247}) Z/7Z\Z/7\Z not in database
33 3.1.104.1 Z/2Z\Z/2\Z not in database
66 6.0.1124864.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.0.964430272.8 Z/14Z\Z/14\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/2ZZ/14Z\Z/2\Z \oplus \Z/14\Z not in database
1616 deg 16 Z/21Z\Z/21\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type split ss ord ord ord add ord add ord ord ord ord ss ord ord
λ\lambda-invariant(s) 4 1,1 1 1 1 - 1 - 1 1 1 1 1,1 1 1
μ\mu-invariant(s) 0 0,0 0 0 0 - 0 - 0 0 0 0 0,0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.