Properties

Label 122018j2
Conductor 122018122018
Discriminant 7.975×1020-7.975\times 10^{20}
j-invariant 941963753511808 \frac{94196375}{3511808}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3+x2+578315x1347844051y^2+xy=x^3+x^2+578315x-1347844051 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3+x2z+578315xz21347844051z3y^2z+xyz=x^3+x^2z+578315xz^2-1347844051z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+749495565x62896254480306y^2=x^3+749495565x-62896254480306 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 0, 578315, -1347844051])
 
gp: E = ellinit([1, 1, 0, 578315, -1347844051])
 
magma: E := EllipticCurve([1, 1, 0, 578315, -1347844051]);
 
oscar: E = elliptic_curve([1, 1, 0, 578315, -1347844051])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  122018 122018  = 21321922 \cdot 13^{2} \cdot 19^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  797466564520426092032-797466564520426092032 = 129136199-1 \cdot 2^{9} \cdot 13^{6} \cdot 19^{9}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  941963753511808 \frac{94196375}{3511808}  = 2953731331932^{-9} \cdot 5^{3} \cdot 7^{3} \cdot 13^{3} \cdot 19^{-3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.69055763493717733328559673832.6905576349371773332855967383
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.064136533376811264745660698425-0.064136533376811264745660698425
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.018745916113811.01874591611381
Szpiro ratio: σm\sigma_{m} ≈ 4.7444850275443834.744485027544383

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.0765213717923195718302091719390.076521371792319571830209171939
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 2 2  = 112 1\cdot1\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.37738469226175229294376509491.3773846922617522929437650949
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  99 = 323^2    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.377384692L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor290.0765211.0000002121.377384692\displaystyle 1.377384692 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{9 \cdot 0.076521 \cdot 1.000000 \cdot 2}{1^2} \approx 1.377384692

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 122018.2.a.f

qq2q3+q4+q6+q7q82q9+6q11q12q14+q16+3q17+2q18+O(q20) q - q^{2} - q^{3} + q^{4} + q^{6} + q^{7} - q^{8} - 2 q^{9} + 6 q^{11} - q^{12} - q^{14} + q^{16} + 3 q^{17} + 2 q^{18} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 4432320
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I9I_{9} nonsplit multiplicative 1 1 9 9
1313 11 I0I_0^{*} additive 1 2 6 0
1919 22 I3I_{3}^{*} additive -1 2 9 3

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3Cs 9.36.0.2

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[43, 30, 49062, 50359], [53299, 54, 53298, 55], [31940, 12285, 30459, 15794], [40015, 28782, 0, 1], [41068, 41067, 38961, 12286], [14821, 32240, 29640, 6917], [41039, 0, 0, 53351], [1, 27, 27, 730], [1, 54, 0, 1], [1, 0, 54, 1], [19, 54, 45936, 32275]]
 
GL(2,Integers(53352)).subgroup(gens)
 
Gens := [[43, 30, 49062, 50359], [53299, 54, 53298, 55], [31940, 12285, 30459, 15794], [40015, 28782, 0, 1], [41068, 41067, 38961, 12286], [14821, 32240, 29640, 6917], [41039, 0, 0, 53351], [1, 27, 27, 730], [1, 54, 0, 1], [1, 0, 54, 1], [19, 54, 45936, 32275]];
 
sub<GL(2,Integers(53352))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 53352=23331319 53352 = 2^{3} \cdot 3^{3} \cdot 13 \cdot 19 , index 12961296, genus 4343, and generators

(43304906250359),(53299545329855),(31940122853045915794),(400152878201),(41068410673896112286),(1482132240296406917),(410390053351),(12727730),(15401),(10541),(19544593632275)\left(\begin{array}{rr} 43 & 30 \\ 49062 & 50359 \end{array}\right),\left(\begin{array}{rr} 53299 & 54 \\ 53298 & 55 \end{array}\right),\left(\begin{array}{rr} 31940 & 12285 \\ 30459 & 15794 \end{array}\right),\left(\begin{array}{rr} 40015 & 28782 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 41068 & 41067 \\ 38961 & 12286 \end{array}\right),\left(\begin{array}{rr} 14821 & 32240 \\ 29640 & 6917 \end{array}\right),\left(\begin{array}{rr} 41039 & 0 \\ 0 & 53351 \end{array}\right),\left(\begin{array}{rr} 1 & 27 \\ 27 & 730 \end{array}\right),\left(\begin{array}{rr} 1 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 54 & 1 \end{array}\right),\left(\begin{array}{rr} 19 & 54 \\ 45936 & 32275 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[53352])K:=\Q(E[53352]) is a degree-12043701308620801204370130862080 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/53352Z)\GL_2(\Z/53352\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 61009=132192 61009 = 13^{2} \cdot 19^{2}
33 good 22 61009=132192 61009 = 13^{2} \cdot 19^{2}
1313 additive 8686 722=2192 722 = 2 \cdot 19^{2}
1919 additive 200200 338=2132 338 = 2 \cdot 13^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 122018j consists of 3 curves linked by isogenies of degrees dividing 9.

Twists

The minimal quadratic twist of this elliptic curve is 38a1, its twist by 247-247.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(741)\Q(\sqrt{741}) Z/3Z\Z/3\Z not in database
22 Q(247)\Q(\sqrt{-247}) Z/3Z\Z/3\Z not in database
33 3.1.152.1 Z/2Z\Z/2\Z not in database
44 Q(3,247)\Q(\sqrt{-3}, \sqrt{-247}) Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
66 6.0.3511808.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.2.26039617344.2 Z/6Z\Z/6\Z not in database
66 6.0.964430272.9 Z/6Z\Z/6\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1818 18.6.1227631610095467504296487801416377174030149.2 Z/9Z\Z/9\Z not in database
1818 18.0.117360435758840934455250038598183.1 Z/9Z\Z/9\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit ord ss ord ord add ord add ord ord ord ord ss ord ss
λ\lambda-invariant(s) 2 2 0,0 2 0 - 0 - 0 0 0 0 0,0 0 0,0
μ\mu-invariant(s) 0 0 0,0 0 0 - 0 - 0 0 0 0 0,0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.