Properties

Label 132278b2
Conductor 132278132278
Discriminant 1.481×1017-1.481\times 10^{17}
j-invariant 941963753511808 \frac{94196375}{3511808}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3+32997x18370351y^2+xy=x^3+32997x-18370351 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3+32997xz218370351z3y^2z+xyz=x^3+32997xz^2-18370351z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+42764085x857215388538y^2=x^3+42764085x-857215388538 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 0, 32997, -18370351])
 
gp: E = ellinit([1, 0, 0, 32997, -18370351])
 
magma: E := EllipticCurve([1, 0, 0, 32997, -18370351]);
 
oscar: E = elliptic_curve([1, 0, 0, 32997, -18370351])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  132278 132278  = 2195922 \cdot 19 \cdot 59^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  148129935484732928-148129935484732928 = 129193596-1 \cdot 2^{9} \cdot 19^{3} \cdot 59^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  941963753511808 \frac{94196375}{3511808}  = 2953731331932^{-9} \cdot 5^{3} \cdot 7^{3} \cdot 13^{3} \cdot 19^{-3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.97463218857604846056236448851.9746321885760484605623644885
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.064136533376811264745660698359-0.064136533376811264745660698359
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.018745916113811.01874591611381
Szpiro ratio: σm\sigma_{m} ≈ 3.9834895468011393.983489546801139

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.156568798124434479854973967580.15656879812443447985497396758
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 27 27  = 3231 3^{2}\cdot3\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 4.22735754935973095608429712474.2273575493597309560842971247
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.227357549L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.1565691.00000027124.227357549\displaystyle 4.227357549 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.156569 \cdot 1.000000 \cdot 27}{1^2} \approx 4.227357549

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 132278.2.a.g

q+q2+q3+q4+q6q7+q82q9+6q11+q125q13q14+q16+3q172q18+q19+O(q20) q + q^{2} + q^{3} + q^{4} + q^{6} - q^{7} + q^{8} - 2 q^{9} + 6 q^{11} + q^{12} - 5 q^{13} - q^{14} + q^{16} + 3 q^{17} - 2 q^{18} + q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 1224612
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 99 I9I_{9} split multiplicative -1 1 9 9
1919 33 I3I_{3} split multiplicative -1 1 3 3
5959 11 I0I_0^{*} additive -1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3Cs 9.36.0.2

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[242083, 54, 242082, 55], [60535, 213462, 0, 1], [1, 27, 27, 730], [19, 54, 234720, 221059], [132220, 106731, 125493, 33454], [106732, 106731, 14337, 135406], [174877, 36344, 107616, 130037], [1, 54, 0, 1], [1, 0, 54, 1], [102599, 0, 0, 242135], [43, 30, 237846, 239143]]
 
GL(2,Integers(242136)).subgroup(gens)
 
Gens := [[242083, 54, 242082, 55], [60535, 213462, 0, 1], [1, 27, 27, 730], [19, 54, 234720, 221059], [132220, 106731, 125493, 33454], [106732, 106731, 14337, 135406], [174877, 36344, 107616, 130037], [1, 54, 0, 1], [1, 0, 54, 1], [102599, 0, 0, 242135], [43, 30, 237846, 239143]];
 
sub<GL(2,Integers(242136))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 242136=23331959 242136 = 2^{3} \cdot 3^{3} \cdot 19 \cdot 59 , index 12961296, genus 4343, and generators

(2420835424208255),(6053521346201),(12727730),(1954234720221059),(13222010673112549333454),(10673210673114337135406),(17487736344107616130037),(15401),(10541),(10259900242135),(4330237846239143)\left(\begin{array}{rr} 242083 & 54 \\ 242082 & 55 \end{array}\right),\left(\begin{array}{rr} 60535 & 213462 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 27 \\ 27 & 730 \end{array}\right),\left(\begin{array}{rr} 19 & 54 \\ 234720 & 221059 \end{array}\right),\left(\begin{array}{rr} 132220 & 106731 \\ 125493 & 33454 \end{array}\right),\left(\begin{array}{rr} 106732 & 106731 \\ 14337 & 135406 \end{array}\right),\left(\begin{array}{rr} 174877 & 36344 \\ 107616 & 130037 \end{array}\right),\left(\begin{array}{rr} 1 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 54 & 1 \end{array}\right),\left(\begin{array}{rr} 102599 & 0 \\ 0 & 242135 \end{array}\right),\left(\begin{array}{rr} 43 & 30 \\ 237846 & 239143 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[242136])K:=\Q(E[242136]) is a degree-547249464498585600547249464498585600 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/242136Z)\GL_2(\Z/242136\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 66139=19592 66139 = 19 \cdot 59^{2}
33 good 22 3481=592 3481 = 59^{2}
1919 split multiplicative 2020 6962=2592 6962 = 2 \cdot 59^{2}
5959 additive 17421742 38=219 38 = 2 \cdot 19

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 132278b consists of 3 curves linked by isogenies of degrees dividing 9.

Twists

The minimal quadratic twist of this elliptic curve is 38a1, its twist by 59-59.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(177)\Q(\sqrt{177}) Z/3Z\Z/3\Z not in database
22 Q(59)\Q(\sqrt{-59}) Z/3Z\Z/3\Z not in database
33 3.1.152.1 Z/2Z\Z/2\Z not in database
44 Q(3,59)\Q(\sqrt{-3}, \sqrt{-59}) Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
66 6.0.3511808.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.2.128117063232.1 Z/6Z\Z/6\Z not in database
66 6.0.4745076416.3 Z/6Z\Z/6\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1818 18.6.146212732545460688869709795257585569549365673.1 Z/9Z\Z/9\Z not in database
1818 18.0.13977800721253588904239775435581491.1 Z/9Z\Z/9\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 59
Reduction type split ord ss ord ord ord ord split ord ord ord ord ss ord ss add
λ\lambda-invariant(s) 1 6 0,0 0 0 0 0 1 0 0 0 0 0,0 0 0,0 -
μ\mu-invariant(s) 0 0 0,0 0 0 0 0 0 0 0 0 0 0,0 0 0,0 -

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.