Properties

Label 180336v1
Conductor 180336180336
Discriminant 1.175×10141.175\times 10^{14}
j-invariant 13478411517952304317 \frac{13478411517952}{304317}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+x2361057x83623702y^2=x^3+x^2-361057x-83623702 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+x2z361057xz283623702z3y^2z=x^3+x^2z-361057xz^2-83623702z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x329245644x60873941853y^2=x^3-29245644x-60873941853 Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([0, 1, 0, -361057, -83623702])
 
Copy content gp:E = ellinit([0, 1, 0, -361057, -83623702])
 
Copy content magma:E := EllipticCurve([0, 1, 0, -361057, -83623702]);
 
Copy content oscar:E = elliptic_curve([0, 1, 0, -361057, -83623702])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1786134914/42025,75480167664438/8615125)(1786134914/42025, 75480167664438/8615125)16.23767770104630801175394163016.237677701046308011753941630\infty
(346,0)(-346, 0)0022

Integral points

(346,0) \left(-346, 0\right) Copy content Toggle raw display

Copy content comment:Integral points
 
Copy content sage:E.integral_points()
 
Copy content magma:IntegralPoints(E);
 

Invariants

Conductor: NN  =  180336 180336  = 243131722^{4} \cdot 3 \cdot 13 \cdot 17^{2}
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: Δ\Delta  =  117527561365968117527561365968 = 2434131782^{4} \cdot 3^{4} \cdot 13 \cdot 17^{8}
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: jj  =  13478411517952304317 \frac{13478411517952}{304317}  = 2143413117293732^{14} \cdot 3^{-4} \cdot 13^{-1} \cdot 17^{-2} \cdot 937^{3}
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.81393087733736941715237181921.8139308773373694171523718192
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.166275145122612940555193803110.16627514512261294055519380311
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.96320643703611910.9632064370361191
Szpiro ratio: σm\sigma_{m} ≈ 4.1316802964993814.131680296499381

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 16.23767770104630801175394163016.237677701046308011753941630
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: Ω\Omega ≈ 0.194762840773522991385903253050.19476284077352299138590325305
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 16 16  = 122122 1\cdot2^{2}\cdot1\cdot2^{2}
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 12.64998494648266779342987081012.649984946482667793429870810
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

12.649984946L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.19476316.237678162212.649984946\begin{aligned} 12.649984946 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.194763 \cdot 16.237678 \cdot 16}{2^2} \\ & \approx 12.649984946\end{aligned}

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([0, 1, 0, -361057, -83623702]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([0, 1, 0, -361057, -83623702]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 180336.2.a.cy

q+q3+2q5+2q7+q92q11q13+2q15+6q19+O(q20) q + q^{3} + 2 q^{5} + 2 q^{7} + q^{9} - 2 q^{11} - q^{13} + 2 q^{15} + 6 q^{19} + O(q^{20}) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 1105920
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 IIII additive -1 4 4 0
33 44 I4I_{4} split multiplicative -1 1 4 4
1313 11 I1I_{1} nonsplit multiplicative 1 1 1 1
1717 44 I2I_{2}^{*} additive 1 2 8 2

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 4.6.0.3

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[2653, 8, 0, 1], [3678, 1, 839, 4], [1, 0, 8, 1], [1, 8, 0, 1], [1, 4, 4, 17], [1319, 5298, 5282, 5285], [2801, 5298, 630, 5], [3, 8, 28, 75], [5297, 8, 5296, 9], [1769, 8, 1772, 33], [5, 8, 48, 77]] GL(2,Integers(5304)).subgroup(gens)
 
Copy content magma:Gens := [[2653, 8, 0, 1], [3678, 1, 839, 4], [1, 0, 8, 1], [1, 8, 0, 1], [1, 4, 4, 17], [1319, 5298, 5282, 5285], [2801, 5298, 630, 5], [3, 8, 28, 75], [5297, 8, 5296, 9], [1769, 8, 1772, 33], [5, 8, 48, 77]]; sub<GL(2,Integers(5304))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 5304=2331317 5304 = 2^{3} \cdot 3 \cdot 13 \cdot 17 , index 4848, genus 00, and generators

(2653801),(367818394),(1081),(1801),(14417),(1319529852825285),(280152986305),(382875),(5297852969),(17698177233),(584877)\left(\begin{array}{rr} 2653 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3678 & 1 \\ 839 & 4 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 1319 & 5298 \\ 5282 & 5285 \end{array}\right),\left(\begin{array}{rr} 2801 & 5298 \\ 630 & 5 \end{array}\right),\left(\begin{array}{rr} 3 & 8 \\ 28 & 75 \end{array}\right),\left(\begin{array}{rr} 5297 & 8 \\ 5296 & 9 \end{array}\right),\left(\begin{array}{rr} 1769 & 8 \\ 1772 & 33 \end{array}\right),\left(\begin{array}{rr} 5 & 8 \\ 48 & 77 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[5304])K:=\Q(E[5304]) is a degree-31534539079683153453907968 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/5304Z)\GL_2(\Z/5304\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 3757=13172 3757 = 13 \cdot 17^{2}
33 split multiplicative 44 60112=2413172 60112 = 2^{4} \cdot 13 \cdot 17^{2}
1313 nonsplit multiplicative 1414 13872=243172 13872 = 2^{4} \cdot 3 \cdot 17^{2}
1717 additive 162162 624=24313 624 = 2^{4} \cdot 3 \cdot 13

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 180336v consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 2652d1, its twist by 68-68.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(13)\Q(\sqrt{13}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.0.240448.4 Z/4Z\Z/4\Z not in database
88 8.4.1651261089746944.11 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.9770775678976.53 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.