y 2 = x 3 + x 2 − 361057 x − 83623702 y^2=x^3+x^2-361057x-83623702 y 2 = x 3 + x 2 − 3 6 1 0 5 7 x − 8 3 6 2 3 7 0 2
(homogenize , simplify )
y 2 z = x 3 + x 2 z − 361057 x z 2 − 83623702 z 3 y^2z=x^3+x^2z-361057xz^2-83623702z^3 y 2 z = x 3 + x 2 z − 3 6 1 0 5 7 x z 2 − 8 3 6 2 3 7 0 2 z 3
(dehomogenize , simplify )
y 2 = x 3 − 29245644 x − 60873941853 y^2=x^3-29245644x-60873941853 y 2 = x 3 − 2 9 2 4 5 6 4 4 x − 6 0 8 7 3 9 4 1 8 5 3
(homogenize , minimize )
sage: E = EllipticCurve([0, 1, 0, -361057, -83623702])
gp: E = ellinit([0, 1, 0, -361057, -83623702])
magma: E := EllipticCurve([0, 1, 0, -361057, -83623702]);
oscar: E = elliptic_curve([0, 1, 0, -361057, -83623702])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z / 2 Z \Z \oplus \Z/{2}\Z Z ⊕ Z / 2 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( 1786134914 / 42025 , 75480167664438 / 8615125 ) (1786134914/42025, 75480167664438/8615125) ( 1 7 8 6 1 3 4 9 1 4 / 4 2 0 2 5 , 7 5 4 8 0 1 6 7 6 6 4 4 3 8 / 8 6 1 5 1 2 5 ) 16.237677701046308011753941630 16.237677701046308011753941630 1 6 . 2 3 7 6 7 7 7 0 1 0 4 6 3 0 8 0 1 1 7 5 3 9 4 1 6 3 0 ∞ \infty ∞
( − 346 , 0 ) (-346, 0) ( − 3 4 6 , 0 ) 0 0 0 2 2 2
( − 346 , 0 ) \left(-346, 0\right) ( − 3 4 6 , 0 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
180336 180336 1 8 0 3 3 6 = 2 4 ⋅ 3 ⋅ 13 ⋅ 1 7 2 2^{4} \cdot 3 \cdot 13 \cdot 17^{2} 2 4 ⋅ 3 ⋅ 1 3 ⋅ 1 7 2
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
117527561365968 117527561365968 1 1 7 5 2 7 5 6 1 3 6 5 9 6 8 = 2 4 ⋅ 3 4 ⋅ 13 ⋅ 1 7 8 2^{4} \cdot 3^{4} \cdot 13 \cdot 17^{8} 2 4 ⋅ 3 4 ⋅ 1 3 ⋅ 1 7 8
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
13478411517952 304317 \frac{13478411517952}{304317} 3 0 4 3 1 7 1 3 4 7 8 4 1 1 5 1 7 9 5 2 = 2 14 ⋅ 3 − 4 ⋅ 1 3 − 1 ⋅ 1 7 − 2 ⋅ 93 7 3 2^{14} \cdot 3^{-4} \cdot 13^{-1} \cdot 17^{-2} \cdot 937^{3} 2 1 4 ⋅ 3 − 4 ⋅ 1 3 − 1 ⋅ 1 7 − 2 ⋅ 9 3 7 3
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 1.8139308773373694171523718192 1.8139308773373694171523718192 1 . 8 1 3 9 3 0 8 7 7 3 3 7 3 6 9 4 1 7 1 5 2 3 7 1 8 1 9 2
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 0.16627514512261294055519380311 0.16627514512261294055519380311 0 . 1 6 6 2 7 5 1 4 5 1 2 2 6 1 2 9 4 0 5 5 5 1 9 3 8 0 3 1 1
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 0.9632064370361191 0.9632064370361191 0 . 9 6 3 2 0 6 4 3 7 0 3 6 1 1 9 1
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 4.131680296499381 4.131680296499381 4 . 1 3 1 6 8 0 2 9 6 4 9 9 3 8 1
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 1 1 1
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 16.237677701046308011753941630 16.237677701046308011753941630 1 6 . 2 3 7 6 7 7 7 0 1 0 4 6 3 0 8 0 1 1 7 5 3 9 4 1 6 3 0
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 0.19476284077352299138590325305 0.19476284077352299138590325305 0 . 1 9 4 7 6 2 8 4 0 7 7 3 5 2 2 9 9 1 3 8 5 9 0 3 2 5 3 0 5
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 16 16 1 6
= 1 ⋅ 2 2 ⋅ 1 ⋅ 2 2 1\cdot2^{2}\cdot1\cdot2^{2} 1 ⋅ 2 2 ⋅ 1 ⋅ 2 2
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 2 2 2
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 12.649984946482667793429870810 12.649984946482667793429870810 1 2 . 6 4 9 9 8 4 9 4 6 4 8 2 6 6 7 7 9 3 4 2 9 8 7 0 8 1 0
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
12.649984946 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.194763 ⋅ 16.237678 ⋅ 16 2 2 ≈ 12.649984946 \begin{aligned} 12.649984946 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.194763 \cdot 16.237678 \cdot 16}{2^2} \\ & \approx 12.649984946\end{aligned} 1 2 . 6 4 9 9 8 4 9 4 6 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 2 2 1 ⋅ 0 . 1 9 4 7 6 3 ⋅ 1 6 . 2 3 7 6 7 8 ⋅ 1 6 ≈ 1 2 . 6 4 9 9 8 4 9 4 6
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([0, 1, 0, -361057, -83623702]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([0, 1, 0, -361057, -83623702]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
180336.2.a.cy
q + q 3 + 2 q 5 + 2 q 7 + q 9 − 2 q 11 − q 13 + 2 q 15 + 6 q 19 + O ( q 20 ) q + q^{3} + 2 q^{5} + 2 q^{7} + q^{9} - 2 q^{11} - q^{13} + 2 q^{15} + 6 q^{19} + O(q^{20}) q + q 3 + 2 q 5 + 2 q 7 + q 9 − 2 q 1 1 − q 1 3 + 2 q 1 5 + 6 q 1 9 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 4 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: gens = [[2653, 8, 0, 1], [3678, 1, 839, 4], [1, 0, 8, 1], [1, 8, 0, 1], [1, 4, 4, 17], [1319, 5298, 5282, 5285], [2801, 5298, 630, 5], [3, 8, 28, 75], [5297, 8, 5296, 9], [1769, 8, 1772, 33], [5, 8, 48, 77]]
GL(2,Integers(5304)).subgroup(gens)
magma: Gens := [[2653, 8, 0, 1], [3678, 1, 839, 4], [1, 0, 8, 1], [1, 8, 0, 1], [1, 4, 4, 17], [1319, 5298, 5282, 5285], [2801, 5298, 630, 5], [3, 8, 28, 75], [5297, 8, 5296, 9], [1769, 8, 1772, 33], [5, 8, 48, 77]];
sub<GL(2,Integers(5304))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 5304 = 2 3 ⋅ 3 ⋅ 13 ⋅ 17 5304 = 2^{3} \cdot 3 \cdot 13 \cdot 17 5 3 0 4 = 2 3 ⋅ 3 ⋅ 1 3 ⋅ 1 7 , index 48 48 4 8 , genus 0 0 0 , and generators
( 2653 8 0 1 ) , ( 3678 1 839 4 ) , ( 1 0 8 1 ) , ( 1 8 0 1 ) , ( 1 4 4 17 ) , ( 1319 5298 5282 5285 ) , ( 2801 5298 630 5 ) , ( 3 8 28 75 ) , ( 5297 8 5296 9 ) , ( 1769 8 1772 33 ) , ( 5 8 48 77 ) \left(\begin{array}{rr}
2653 & 8 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
3678 & 1 \\
839 & 4
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
8 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & 8 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & 4 \\
4 & 17
\end{array}\right),\left(\begin{array}{rr}
1319 & 5298 \\
5282 & 5285
\end{array}\right),\left(\begin{array}{rr}
2801 & 5298 \\
630 & 5
\end{array}\right),\left(\begin{array}{rr}
3 & 8 \\
28 & 75
\end{array}\right),\left(\begin{array}{rr}
5297 & 8 \\
5296 & 9
\end{array}\right),\left(\begin{array}{rr}
1769 & 8 \\
1772 & 33
\end{array}\right),\left(\begin{array}{rr}
5 & 8 \\
48 & 77
\end{array}\right) ( 2 6 5 3 0 8 1 ) , ( 3 6 7 8 8 3 9 1 4 ) , ( 1 8 0 1 ) , ( 1 0 8 1 ) , ( 1 4 4 1 7 ) , ( 1 3 1 9 5 2 8 2 5 2 9 8 5 2 8 5 ) , ( 2 8 0 1 6 3 0 5 2 9 8 5 ) , ( 3 2 8 8 7 5 ) , ( 5 2 9 7 5 2 9 6 8 9 ) , ( 1 7 6 9 1 7 7 2 8 3 3 ) , ( 5 4 8 8 7 7 ) .
The torsion field K : = Q ( E [ 5304 ] ) K:=\Q(E[5304]) K : = Q ( E [ 5 3 0 4 ] ) is a degree-3153453907968 3153453907968 3 1 5 3 4 5 3 9 0 7 9 6 8 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 5304 Z ) \GL_2(\Z/5304\Z) GL 2 ( Z / 5 3 0 4 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
additive
2 2 2
3757 = 13 ⋅ 1 7 2 3757 = 13 \cdot 17^{2} 3 7 5 7 = 1 3 ⋅ 1 7 2
3 3 3
split multiplicative
4 4 4
60112 = 2 4 ⋅ 13 ⋅ 1 7 2 60112 = 2^{4} \cdot 13 \cdot 17^{2} 6 0 1 1 2 = 2 4 ⋅ 1 3 ⋅ 1 7 2
13 13 1 3
nonsplit multiplicative
14 14 1 4
13872 = 2 4 ⋅ 3 ⋅ 1 7 2 13872 = 2^{4} \cdot 3 \cdot 17^{2} 1 3 8 7 2 = 2 4 ⋅ 3 ⋅ 1 7 2
17 17 1 7
additive
162 162 1 6 2
624 = 2 4 ⋅ 3 ⋅ 13 624 = 2^{4} \cdot 3 \cdot 13 6 2 4 = 2 4 ⋅ 3 ⋅ 1 3
gp: ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2.
Its isogeny class 180336v
consists of 2 curves linked by isogenies of
degree 2.
The minimal quadratic twist of this elliptic curve is
2652d1 , its twist by − 68 -68 − 6 8 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z \cong \Z/{2}\Z ≅ Z / 2 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( 13 ) \Q(\sqrt{13}) Q ( 1 3 )
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
4 4 4
4.0.240448.4
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
8 8 8
8.4.1651261089746944.11
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
8.0.9770775678976.53
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 6 Z \Z/6\Z Z / 6 Z
not in database
16 16 1 6
deg 16
Z / 4 Z ⊕ Z / 4 Z \Z/4\Z \oplus \Z/4\Z Z / 4 Z ⊕ Z / 4 Z
not in database
16 16 1 6
deg 16
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
No Iwasawa invariant data is available for this curve.
p p p -adic regulators
p p p -adic regulators are not yet computed for curves that are not Γ 0 \Gamma_0 Γ 0 -optimal.