Properties

Label 23104l2
Conductor 2310423104
Discriminant 4.331×1019-4.331\times 10^{19}
j-invariant 941963753511808 \frac{94196375}{3511808}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+x2+219007x314091553y^2=x^3+x^2+219007x-314091553 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+x2z+219007xz2314091553z3y^2z=x^3+x^2z+219007xz^2-314091553z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+17739540x229025960784y^2=x^3+17739540x-229025960784 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 0, 219007, -314091553])
 
gp: E = ellinit([0, 1, 0, 219007, -314091553])
 
magma: E := EllipticCurve([0, 1, 0, 219007, -314091553]);
 
oscar: E = elliptic_curve([0, 1, 0, 219007, -314091553])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  23104 23104  = 261922^{6} \cdot 19^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  43310409649448026112-43310409649448026112 = 1227199-1 \cdot 2^{27} \cdot 19^{9}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  941963753511808 \frac{94196375}{3511808}  = 2953731331932^{-9} \cdot 5^{3} \cdot 7^{3} \cdot 13^{3} \cdot 19^{-3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.44780372704632692938470119972.4478037270463269293847011997
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.064136533376811264745660698431-0.064136533376811264745660698431
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.018745916113811.01874591611381
Szpiro ratio: σm\sigma_{m} ≈ 5.24037148723927355.2403714872392735

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.0975459919939814971663695977050.097545991993981497166369597705
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 22 2\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 3.51165571178333389798930551743.5116557117833338979893055174
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  99 = 323^2    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.511655712L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor290.0975461.0000004123.511655712\displaystyle 3.511655712 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{9 \cdot 0.097546 \cdot 1.000000 \cdot 4}{1^2} \approx 3.511655712

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   23104.2.a.bj

q+q3q72q9+6q11+5q13+3q17+O(q20) q + q^{3} - q^{7} - 2 q^{9} + 6 q^{11} + 5 q^{13} + 3 q^{17} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 414720
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I17I_{17}^{*} additive 1 6 27 9
1919 22 I3I_{3}^{*} additive -1 2 9 3

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3Cs 9.36.0.2

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[19, 54, 792, 3547], [2509, 3512, 912, 2813], [1, 27, 27, 730], [1, 54, 0, 1], [3212, 4077, 1731, 3482], [4076, 4077, 2079, 26], [3079, 54, 0, 1], [4051, 54, 4050, 55], [1, 0, 54, 1], [43, 30, 3918, 1111]]
 
GL(2,Integers(4104)).subgroup(gens)
 
Gens := [[19, 54, 792, 3547], [2509, 3512, 912, 2813], [1, 27, 27, 730], [1, 54, 0, 1], [3212, 4077, 1731, 3482], [4076, 4077, 2079, 26], [3079, 54, 0, 1], [4051, 54, 4050, 55], [1, 0, 54, 1], [43, 30, 3918, 1111]];
 
sub<GL(2,Integers(4104))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 4104=233319 4104 = 2^{3} \cdot 3^{3} \cdot 19 , index 12961296, genus 4343, and generators

(19547923547),(250935129122813),(12727730),(15401),(3212407717313482),(40764077207926),(30795401),(405154405055),(10541),(433039181111)\left(\begin{array}{rr} 19 & 54 \\ 792 & 3547 \end{array}\right),\left(\begin{array}{rr} 2509 & 3512 \\ 912 & 2813 \end{array}\right),\left(\begin{array}{rr} 1 & 27 \\ 27 & 730 \end{array}\right),\left(\begin{array}{rr} 1 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3212 & 4077 \\ 1731 & 3482 \end{array}\right),\left(\begin{array}{rr} 4076 & 4077 \\ 2079 & 26 \end{array}\right),\left(\begin{array}{rr} 3079 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4051 & 54 \\ 4050 & 55 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 54 & 1 \end{array}\right),\left(\begin{array}{rr} 43 & 30 \\ 3918 & 1111 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[4104])K:=\Q(E[4104]) is a degree-4595429376045954293760 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/4104Z)\GL_2(\Z/4104\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 44 361=192 361 = 19^{2}
1919 additive 200200 64=26 64 = 2^{6}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 23104l consists of 3 curves linked by isogenies of degrees dividing 9.

Twists

The minimal quadratic twist of this elliptic curve is 38a1, its twist by 152-152.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(114)\Q(\sqrt{114}) Z/3Z\Z/3\Z not in database
22 Q(38)\Q(\sqrt{-38}) Z/3Z\Z/3\Z not in database
33 3.1.152.1 Z/2Z\Z/2\Z not in database
44 Q(3,38)\Q(\sqrt{-3}, \sqrt{-38}) Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
66 6.0.3511808.1 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
66 6.2.94818816.1 Z/6Z\Z/6\Z not in database
1212 12.2.119973433931988992.10 Z/4Z\Z/4\Z not in database
1212 12.0.8990607867641856.3 Z/6ZZ/6Z\Z/6\Z \oplus \Z/6\Z not in database
1818 18.6.15537737306818501852959167607262899339264.3 Z/9Z\Z/9\Z not in database
1818 18.0.1485393179874874809517382565888.2 Z/9Z\Z/9\Z not in database

We only show fields where the torsion growth is primitive.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add ord ss ord ord ord ord add ord ord ord ord ss ord ss
λ\lambda-invariant(s) - 2 0,0 0 0 0 0 - 0 0 0 0 0,0 0 0,0
μ\mu-invariant(s) - 0 0,0 0 0 0 0 - 0 0 0 0 0,0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.